論文の概要: Verifiable Sustainability in Data Centers
- arxiv url: http://arxiv.org/abs/2307.11993v3
- Date: Fri, 12 Jan 2024 05:30:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-16 00:19:32.463067
- Title: Verifiable Sustainability in Data Centers
- Title(参考訳): データセンターにおける検証可能なサステナビリティ
- Authors: Syed Rafiul Hussain, Patrick McDaniel, Anshul Gandhi, Kanad Ghose,
Kartik Gopalan, Dongyoon Lee, Yu David Liu, Zhenhua Liu, Shuai Mu and Erez
Zadok
- Abstract要約: データセンターには、実施と運用の両方において重要なエネルギー需要があり、有害な持続可能性に影響を及ぼす。
検証可能な持続可能性データの収集、集約、報告のための現在の技術とツールは、サイバー攻撃や誤用に対して脆弱である。
本稿では,これらの要求に対処するためのセキュリティ上の課題と研究の方向性について概説する。
- 参考スコア(独自算出の注目度): 8.53146020727443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data centers have significant energy needs, both embodied and operational,
affecting sustainability adversely. The current techniques and tools for
collecting, aggregating, and reporting verifiable sustainability data are
vulnerable to cyberattacks and misuse, requiring new security and
privacy-preserving solutions. This paper outlines security challenges and
research directions for addressing these pressing requirements.
- Abstract(参考訳): データセンターには、実施と運用の両方において重要なエネルギー需要があり、持続可能性に悪影響を及ぼす。
検証可能なサステナビリティデータの収集、集約、報告のための現在の技術とツールは、サイバー攻撃や誤用に対して脆弱であり、新しいセキュリティとプライバシ保護ソリューションを必要とする。
本稿では,これらの要求に対処するためのセキュリティ上の課題と研究の方向性について概説する。
関連論文リスト
- 2FA: Navigating the Challenges and Solutions for Inclusive Access [55.2480439325792]
2要素認証(2FA)は、オンライン活動を保護する重要なソリューションとして浮上している。
本稿では,全ユーザに対して安全かつアクセス可能な方法で2FAをデプロイすることの難しさについて検討する。
人気オンラインプラットフォームにおける様々な2FA手法の実装と利用状況について分析を行った。
論文 参考訳(メタデータ) (2025-02-17T12:23:53Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
本稿では,安定したデータのみを用いて,スマートグリッドの不安定性を検出する新しいフレームワークを提案する。
ジェネレータはGAN(Generative Adversarial Network)に依存しており、ジェネレータは不安定なデータを生成するために訓練される。
我々の解は、実世界の安定と不安定なサンプルからなるデータセットでテストされ、格子安定性の予測において最大97.5%、敵攻撃の検出において最大98.9%の精度を達成する。
論文 参考訳(メタデータ) (2025-01-27T20:48:25Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Digital Twin for Evaluating Detective Countermeasures in Smart Grid Cybersecurity [0.0]
この研究は、スマートグリッドのサイバー物理実験環境を複製し、デジタル双生児の可能性を掘り下げる。
ハードウェア・イン・ザ・ループ評価のためのフレキシブルで包括的なディジタルツインモデルを提案する。
論文 参考訳(メタデータ) (2024-12-05T08:41:08Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - Critical Infrastructure Security: Penetration Testing and Exploit Development Perspectives [0.0]
本稿では,重要なインフラのセキュリティに関する文献をレビューし,浸透試験と活用開発に焦点をあてる。
この論文の発見は、重要なインフラや、サイバー敵による高度な脅威に固有の脆弱性を明らかにしている。
このレビューは、継続的かつ積極的なセキュリティアセスメントの必要性を強調している。
論文 参考訳(メタデータ) (2024-07-24T13:17:07Z) - Cyberattack Data Analysis in IoT Environments using Big Data [0.0]
私たちの研究は、相互運用性や標準化プロトコルなど、接続性やセキュリティ上の課題の増加に対処しています。
セキュリティ脆弱性の詳細な分析では、攻撃行動、ネットワークトラフィック異常、TCPフラグの使用、ターゲット攻撃など、複雑なパターンと脅威を特定しました。
論文 参考訳(メタデータ) (2024-06-14T02:12:43Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Exploring responsible applications of Synthetic Data to advance Online
Safety Research and Development [0.0]
合成データの利用は、オンラインの安全研究と開発を加速する機会を提供する。
本報告では、合成データのオンライン安全分野への応用の可能性について検討し、この技術の効果的な利用がもたらす倫理的課題に対処する。
論文 参考訳(メタデータ) (2024-02-07T14:39:06Z) - Service Level Agreements and Security SLA: A Comprehensive Survey [51.000851088730684]
本調査では,SLA管理のコンセプト,アプローチ,オープンな課題を網羅する技術の現状を明らかにする。
これは、既存の調査で提案された分析と、このトピックに関する最新の文献とのギャップを包括的にレビューし、カバーすることで貢献する。
SLAライフサイクルの段階に基づく分析を組織化するための新しい分類基準を提案する。
論文 参考訳(メタデータ) (2024-01-31T12:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。