論文の概要: Semi-Supervised Medical Image Segmentation with Co-Distribution
Alignment
- arxiv url: http://arxiv.org/abs/2307.12630v1
- Date: Mon, 24 Jul 2023 09:08:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 14:50:20.261636
- Title: Semi-Supervised Medical Image Segmentation with Co-Distribution
Alignment
- Title(参考訳): 同時分布アライメントによる半監督的医用画像分割
- Authors: Tao Wang, Zhongzheng Huang, Jiawei Wu, Yuanzheng Cai, Zuoyong Li
- Abstract要約: 本稿では,半教師型医用画像分割のためのCo-Distribution Alignment(Co-DA)を提案する。
Co-DAはラベル付きデータの辺縁予測とラベル付きデータの辺縁予測をクラスワイズで調整する。
提案手法は既存の半教師付き医用画像分割法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 16.038016822861092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation has made significant progress when a large amount
of labeled data are available. However, annotating medical image segmentation
datasets is expensive due to the requirement of professional skills.
Additionally, classes are often unevenly distributed in medical images, which
severely affects the classification performance on minority classes. To address
these problems, this paper proposes Co-Distribution Alignment (Co-DA) for
semi-supervised medical image segmentation. Specifically, Co-DA aligns marginal
predictions on unlabeled data to marginal predictions on labeled data in a
class-wise manner with two differently initialized models before using the
pseudo-labels generated by one model to supervise the other. Besides, we design
an over-expectation cross-entropy loss for filtering the unlabeled pixels to
reduce noise in their pseudo-labels. Quantitative and qualitative experiments
on three public datasets demonstrate that the proposed approach outperforms
existing state-of-the-art semi-supervised medical image segmentation methods on
both the 2D CaDIS dataset and the 3D LGE-MRI and ACDC datasets, achieving an
mIoU of 0.8515 with only 24% labeled data on CaDIS, and a Dice score of 0.8824
and 0.8773 with only 20% data on LGE-MRI and ACDC, respectively.
- Abstract(参考訳): 大量のラベル付きデータが利用できると、医療画像のセグメンテーションは大幅に進歩した。
しかし,専門的スキルが要求されるため,医用画像のセグメンテーションデータセットのアノテートは高価である。
さらに、授業は医療画像に不均一に分配されることが多く、少数クラスの分類性能に深刻な影響を及ぼす。
そこで本稿では,半教師付き医用画像セグメンテーションのためのコディストリビューションアライメント(co-da)を提案する。
特に、Co-DAは、あるモデルが生成した擬似ラベルを使用して他方を監督する前に、2つの異なる初期化モデルとクラスワイズでラベル付きデータの辺縁予測をクラスワイズで調整する。
さらに,非ラベル画素をフィルタし,擬似ラベルのノイズを低減するために,過剰なクロスエントロピー損失を設計する。
3つの公開データセットの定量的および定性的な実験により、提案手法は2D CaDISデータセットと3D LGE-MRIおよびACDCデータセットの両方で既存の最先端の半教師付き医療画像セグメンテーション手法より優れており、mIoUはわずか24%のラベル付きデータで0.8515、Diceスコアは0.8824と0.8773で、それぞれLGE-MRIとACDCのデータでわずか20%である。
関連論文リスト
- Fair Text to Medical Image Diffusion Model with Subgroup Distribution Aligned Tuning [12.064840522920251]
医用画像へのテキスト・トゥ・メディカル・イメージ (T2MedI) の潜伏拡散モデルは, 医用画像データの不足を緩和する大きな可能性を秘めている。
しかし、自然画像モデルへのテキストとして、T2MedIモデルは一部のサブグループにも偏りがあり、トレーニングセットの少数派を見渡すことができる。
そこで本研究では,まず,CLIPテキストエンコーダを固定した,事前学習型 Imagen モデルに基づく T2MedI モデルを構築した。
そのデコーダは、C.のRadiology Objectsの医療画像に微調整されている。
論文 参考訳(メタデータ) (2024-06-21T03:23:37Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-06-01T09:20:30Z) - PoissonSeg: Semi-Supervised Few-Shot Medical Image Segmentation via
Poisson Learning [0.505645669728935]
Few-shot Semantic(FSS)は、ディープラーニングにおけるデッドロックを壊すための有望な戦略である。
FSSモデルは、オーバーフィッティングを避けるために十分なピクセルレベルのアノテートクラスを必要とする。
医用画像セグメンテーションのための新しい半教師付きFSSフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-26T10:24:04Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation [40.41161371507547]
我々は1ショットの脳磁気共鳴画像(MRI)画像分割のためのデータ拡張法を開発した。
提案手法は,MRI画像1枚(atlas)とラベルなし画像数枚のみを利用する。
本手法は最先端のワンショット医療セグメンテーション法より優れている。
論文 参考訳(メタデータ) (2021-02-03T12:28:04Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
ラベルのないデータは、注釈付きデータよりもはるかに簡単に取得できる。
医用画像セグメンテーションのための不確実性を考慮したマルチビュー協調トレーニングを提案する。
我々のフレームワークは、ラベルのないデータを効率的に活用してパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-28T22:04:54Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。