Conformal prediction for frequency-severity modeling
- URL: http://arxiv.org/abs/2307.13124v3
- Date: Thu, 1 Aug 2024 11:51:44 GMT
- Title: Conformal prediction for frequency-severity modeling
- Authors: Helton Graziadei, Paulo C. Marques F., Eduardo F. L. de Melo, Rodrigo S. Targino,
- Abstract summary: We present a model-agnostic framework for the construction of prediction intervals of insurance claims.
We extend the technique of split conformal prediction to the domain of two-stage frequency-severity modeling.
- Score: 1.4999444543328293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a model-agnostic framework for the construction of prediction intervals of insurance claims, with finite sample statistical guarantees, extending the technique of split conformal prediction to the domain of two-stage frequency-severity modeling. The framework effectiveness is showcased with simulated and real datasets using classical parametric models and contemporary machine learning methods. When the underlying severity model is a random forest, we extend the two-stage split conformal prediction algorithm, showing how the out-of-bag mechanism can be leveraged to eliminate the need for a calibration set in the conformal procedure.
Related papers
- Conformal prediction of circular data [1.6385815610837167]
Split conformal prediction techniques are applied to regression problems with circular responses.
We analyze a general projection procedure that converts any linear response regression model into one suitable for circular responses.
arXiv Detail & Related papers (2024-10-31T17:05:52Z) - From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - Model orthogonalization and Bayesian forecast mixing via Principal Component Analysis [0.0]
In many cases, the models used in the mixing process are similar.
The existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance.
We show that by adding modelization to the proposed Bayesian Model Combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance.
arXiv Detail & Related papers (2024-05-17T15:01:29Z) - Conformal online model aggregation [29.43493007296859]
This paper proposes a new approach towards conformal model aggregation in online settings.
It is based on combining the prediction sets from several algorithms by voting, where weights on the models are adapted over time based on past performance.
arXiv Detail & Related papers (2024-03-22T15:40:06Z) - Self-Calibrating Conformal Prediction [16.606421967131524]
We introduce Self-Calibrating Conformal Prediction to deliver calibrated point predictions alongside prediction intervals with finite-sample validity conditional on these predictions.
We show that our method improves calibrated interval efficiency through model calibration and offers a practical alternative to feature-conditional validity.
arXiv Detail & Related papers (2024-02-11T21:12:21Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
Quantizing images into discrete representations has been a fundamental problem in unified generative modeling.
deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while quantization suffers from low codebook utilization and reconstruction objective.
This paper presents a regularized vector quantization framework that allows to mitigate perturbed above issues effectively by applying regularization from two perspectives.
arXiv Detail & Related papers (2023-03-11T15:20:54Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Modular Conformal Calibration [80.33410096908872]
We introduce a versatile class of algorithms for recalibration in regression.
This framework allows one to transform any regression model into a calibrated probabilistic model.
We conduct an empirical study of MCC on 17 regression datasets.
arXiv Detail & Related papers (2022-06-23T03:25:23Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.