論文の概要: Object-based Probabilistic Similarity Evidence of Sparse Latent Features
from Fully Convolutional Networks
- arxiv url: http://arxiv.org/abs/2307.13606v1
- Date: Tue, 25 Jul 2023 16:15:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 16:18:47.319801
- Title: Object-based Probabilistic Similarity Evidence of Sparse Latent Features
from Fully Convolutional Networks
- Title(参考訳): 完全畳み込みネットワークからのスパース潜在特徴のオブジェクトベース確率的類似性証拠
- Authors: Cyril Juliani
- Abstract要約: ニューラルネットワークを用いた類似性分析は、様々な領域の複雑なパターンを理解し分類するための強力な手法として登場した。
本研究は,完全畳み込みネットワーク(FCN)が生み出す潜伏情報の類似性解析における利用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Similarity analysis using neural networks has emerged as a powerful technique
for understanding and categorizing complex patterns in various domains. By
leveraging the latent representations learned by neural networks, data objects
such as images can be compared effectively. This research explores the
utilization of latent information generated by fully convolutional networks
(FCNs) in similarity analysis, notably to estimate the visual resemblance of
objects segmented in 2D pictures. To do this, the analytical scheme comprises
two steps: (1) extracting and transforming feature patterns per 2D object from
a trained FCN, and (2) identifying the most similar patterns through fuzzy
inference. The step (2) can be further enhanced by incorporating a weighting
scheme that considers the significance of latent variables in the analysis. The
results provide valuable insights into the benefits and challenges of employing
neural network-based similarity analysis for discerning data patterns
effectively.
- Abstract(参考訳): ニューラルネットワークを用いた類似性分析は、様々な領域の複雑なパターンを理解し分類するための強力な手法として登場した。
ニューラルネットワークが学習する潜在表現を利用することで、画像などのデータオブジェクトを効果的に比較することができる。
本研究では,完全畳み込みネットワーク(FCN)が生成する潜時情報を類似性解析に利用することを検討した。
解析手法は,(1)訓練されたFCNから2次元物体ごとの特徴パターンを抽出・変換し,(2)ファジィ推論により最も類似したパターンを同定する。
ステップ(2)は、解析における潜在変数の重要性を考慮した重み付けスキームを組み込むことによりさらに強化することができる。
結果は、データパターンを効果的に識別するためにニューラルネットワークベースの類似性分析を採用する利点と課題に関する貴重な洞察を提供する。
関連論文リスト
- Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
トポロジカル・データ解析は、複雑な構造のコンパクトでノイズ・ロバストな表現を提供する。
ディープニューラルネットワーク(DNN)は、モデルアーキテクチャによって定義された一連の変換に関連する数百万のパラメータを学習する。
本稿では,画像分類に使用される畳み込みニューラルネットワークの解釈可能性に関する知見を得る目的で,TDAの最先端技術を適用した。
論文 参考訳(メタデータ) (2022-12-01T02:05:44Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - VisGraphNet: a complex network interpretation of convolutional neural
features [6.50413414010073]
ニューラルネットワークの特徴マップをモデル化するための可視性グラフの提案と検討を行う。
この研究は、元のデータよりもこれらのグラフによって提供される別の視点によって動機付けられている。
論文 参考訳(メタデータ) (2021-08-27T20:21:04Z) - SI-Score: An image dataset for fine-grained analysis of robustness to
object location, rotation and size [95.00667357120442]
オブジェクトの位置、回転、サイズを変えることは、非自明な方法で予測に影響を与える可能性がある。
合成データセットであるSI-Scoreを用いて,これらの変動要因に対するロバストネスのきめ細かい解析を行う。
論文 参考訳(メタデータ) (2021-04-09T05:00:49Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
これら2つのタスクの幾何学的関係を利用するための意味的対象性の概念を紹介します。
次に, 対象性仮定に基づくセマンティックオブジェクト・深さ推定ネットワーク(SOSD-Net)を提案する。
私たちの知識を最大限に活用するために、SOSD-Netは同時単眼深度推定とセマンティックセグメンテーションのためのジオメトリ制約を利用する最初のネットワークです。
論文 参考訳(メタデータ) (2021-01-19T02:41:03Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Inter-layer Information Similarity Assessment of Deep Neural Networks
Via Topological Similarity and Persistence Analysis of Data Neighbour
Dynamics [93.4221402881609]
ディープニューラルネットワーク(DNN)による情報構造の定量的解析により、DNNアーキテクチャの理論的性能に関する新たな知見が明らかにされる。
量的情報構造解析のためのLSとIDの戦略に着想を得て, 層間情報類似度評価のための2つの新しい補完手法を提案する。
本研究では,画像データを用いた深層畳み込みニューラルネットワークのアーキテクチャ解析を行い,その効果を実証する。
論文 参考訳(メタデータ) (2020-12-07T15:34:58Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Complexity for deep neural networks and other characteristics of deep
feature representations [0.0]
ニューラルネットワークの計算の非線形性を定量化する複雑性の概念を定義する。
トレーニング対象ネットワークとトレーニング対象ネットワークの動的特性の両面から,これらのオブザーバブルについて検討する。
論文 参考訳(メタデータ) (2020-06-08T17:59:30Z) - Network Comparison with Interpretable Contrastive Network Representation
Learning [44.145644586950574]
コントラストネットワーク表現学習(cNRL)と呼ばれる新しい分析手法を導入する。
cNRLは、ネットワークノードを低次元の表現に埋め込み、あるネットワークが他に比べてユニークであることを明らかにする。
複数のネットワークモデルと実世界のデータセットとのネットワーク比較におけるi-cNRLの有効性を示す。
論文 参考訳(メタデータ) (2020-05-25T21:46:59Z) - Similarity of Neural Networks with Gradients [8.804507286438781]
本稿では,特徴ベクトルと勾配ベクトルの両方を利用してニューラルネットワークの表現を設計することを提案する。
提案手法はニューラルネットワークの類似性を計算するための最先端の手法を提供する。
論文 参考訳(メタデータ) (2020-03-25T17:04:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。