論文の概要: GPT-3 Models are Few-Shot Financial Reasoners
- arxiv url: http://arxiv.org/abs/2307.13617v2
- Date: Wed, 26 Jul 2023 16:14:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 14:55:10.872036
- Title: GPT-3 Models are Few-Shot Financial Reasoners
- Title(参考訳): GPT-3モデルと金融共振器
- Authors: Raul Salles de Padua, Imran Qureshi and Mustafa U. Karakaplan
- Abstract要約: 金融分野において、事前訓練された言語モデルがどの程度理にかなっているかは分かっていない。
我々は、GPT-3でいくつかの実験を行い、別個の検索モデルと論理エンジンが重要なコンポーネントであり続けていることを発見した。
これにより, GPT-3 に対する改良されたプロンプトエンジニアリング手法は, 微調整を伴わずにSOTA 付近の精度を達成できる。
- 参考スコア(独自算出の注目度): 1.0742675209112622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial analysis is an important tool for evaluating company performance.
Practitioners work to answer financial questions to make profitable investment
decisions, and use advanced quantitative analyses to do so. As a result,
Financial Question Answering (QA) is a question answering task that requires
deep reasoning about numbers. Furthermore, it is unknown how well pre-trained
language models can reason in the financial domain. The current
state-of-the-art requires a retriever to collect relevant facts about the
financial question from the text and a generator to produce a valid financial
program and a final answer. However, recently large language models like GPT-3
have achieved state-of-the-art performance on wide variety of tasks with just a
few shot examples. We run several experiments with GPT-3 and find that a
separate retrieval model and logic engine continue to be essential components
to achieving SOTA performance in this task, particularly due to the precise
nature of financial questions and the complex information stored in financial
documents. With this understanding, our refined prompt-engineering approach on
GPT-3 achieves near SOTA accuracy without any fine-tuning.
- Abstract(参考訳): 財務分析は企業業績を評価する重要なツールである。
実践者は、収益性のある投資決定を行うために財務的な質問に答え、高度な定量的分析を用いてそれを行う。
その結果、QA(Financial Question Answering)は、数字に関する深い推論を必要とする質問応答タスクである。
さらに、事前訓練された言語モデルが金融分野でどの程度理にかなっているかは不明である。
現在の最先端技術では、検索者はテキストとジェネレータから財務問題に関する関連事実を収集し、有効な金融プログラムと最終回答を生成する必要がある。
しかし、gpt-3のような最近の大規模言語モデルは、少数の例で、さまざまなタスクで最先端のパフォーマンスを達成している。
我々はGPT-3でいくつかの実験を行い、特に財務問題の性質や財務文書に格納されている複雑な情報により、個別の検索モデルと論理エンジンがSOTAの性能を達成する上で不可欠な要素であることを発見した。
これにより, GPT-3 に対する改良されたプロンプトエンジニアリング手法は, 微調整を伴わずにSOTA 付近の精度を達成できる。
関連論文リスト
- FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering [22.245216871611678]
FAMMAは、金融マルチ言語によるマルチモーダル質問応答のためのオープンソースのベンチマークである。
大学教科書と試験から精巧に収集された質問応答ペアは1,758個ある。
ベンチマークの結果から,FAMMAがこれらのモデルにとって重要な課題であることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-06T15:41:26Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
大規模言語モデル (LLM) は、金融業界において自然言語処理を推進するための強力なツールとなっている。
SNFinLLMという中国の金融ドメイン向けに設計された新しい大規模言語モデルを提案する。
SNFinLLMは、質問への回答、財務調査レポートの要約、感情の分析、財務計算の実行など、ドメイン固有のタスクに優れています。
論文 参考訳(メタデータ) (2024-08-05T08:24:24Z) - Financial Knowledge Large Language Model [4.599537455808687]
大規模言語モデル(LLM)の財務知識を評価するための評価ベンチマークであるIDEA-FinBenchを紹介する。
金融分野への一般LLMの迅速な適応を容易にするためのフレームワークであるIDEA-FinKERを提案する。
最後に LLM を利用した財務質問応答システム IDEA-FinQA を提案する。
論文 参考訳(メタデータ) (2024-06-29T08:26:49Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - BizBench: A Quantitative Reasoning Benchmark for Business and Finance [7.4673182865000225]
BizBenchは、現実的な金融問題を推論するモデルの能力を評価するためのベンチマークである。
新たに収集および拡張されたQAデータから、財務的にテーマ化された3つのコード生成タスクを含む。
これらのタスクは、モデルの財務的背景の知識、財務文書を解析する能力、およびコードの問題を解決する能力を評価する。
論文 参考訳(メタデータ) (2023-11-11T16:16:11Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - What Makes Good In-Context Examples for GPT-$3$? [101.99751777056314]
GPT-$3$はNLPタスクの広い範囲でその優れた性能のために多くの注目を集めています。
その成功にもかかわらず、我々はGPT-$3$の実証結果が文脈内例の選択に大きく依存していることを発見した。
本研究では,文脈内事例を適切に選択するためのより効果的な戦略が存在するかを検討する。
論文 参考訳(メタデータ) (2021-01-17T23:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。