The silicon vacancy centers in SiC: determination of intrinsic spin
dynamics for integrated quantum photonics
- URL: http://arxiv.org/abs/2307.13648v1
- Date: Tue, 25 Jul 2023 16:58:55 GMT
- Title: The silicon vacancy centers in SiC: determination of intrinsic spin
dynamics for integrated quantum photonics
- Authors: Di Liu, Florian Kaiser, Vladislav Bushmakin, Erik Hesselmeier, Timo
Steidl, Takeshi Ohshima, Nguyen Tien Son, Jawad Ul-Hassan, \"Oney O. Soykal,
J\"org Wrachtrup
- Abstract summary: We study the intrinsic spin dynamics of negatively charged $rm V_Si-$ center in 4H-SiC.
We propose a realistic implementation of time-bin entangled multi-photon GHZ and cluster state generation.
We find that up to 3-photon GHZ/cluster states are readily within reach using the existing nanophotonic cavity technology.
- Score: 1.7041006547324578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The negatively-charged silicon vacancy center ($\rm V_{Si}^-$) in silicon
carbide (SiC) is an emerging color center for quantum technology covering
quantum sensing, communication, and computing. Yet, limited information
currently available on the internal spin-optical dynamics of these color
centers prevents us achieving the optimal operation conditions and reaching the
maximum performance especially when integrated within quantum photonics. Here,
we establish all the relevant intrinsic spin dynamics of negatively charged
$\rm V_{Si}^-$ center in 4H-SiC by an in-depth electronic fine structure
modeling including intersystem-crossing and deshelving mechanisms. With
carefully designed spin-dependent measurements, we obtain all previously
unknown spin-selective radiative and non-radiative decay rates. To showcase the
relevance of our work for integrated quantum photonics, we use the obtained
rates to propose a realistic implementation of time-bin entangled multi-photon
GHZ and cluster state generation. We find that up to 3-photon GHZ/cluster
states are readily within reach using the existing nanophotonic cavity
technology.
Related papers
- All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Hybrid Quantum Nanophotonics: Interfacing Color Center in Nanodiamonds
with Si3N4-Photonics [55.41644538483948]
This chapter covers recent developments in the field of hybrid quantum photonics based on color centers in nanodiamonds and Si3N4-photonics.
We believe, that the hybrid approach provides a promising path to realize quantum photonic applications, such as quantum networks or quantum repeaters, in the near future.
arXiv Detail & Related papers (2022-07-26T08:59:48Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Spin-optical dynamics and quantum efficiency of single V1 center in
silicon carbide [1.6492256668939613]
We study the spin-optical dynamics of single silicon vacancy center at hexagonal lattice sites, namely V1, in 4H-polytype silicon carbide.
By utilizing resonant and above-resonant sub-lifetime pulsed excitation, we determine spin-dependent excited-state lifetimes and intersystem-crossing rates.
arXiv Detail & Related papers (2022-03-15T18:12:17Z) - Optical superradiance of a pair of color centers in an integrated
silicon-carbide-on-insulator microresonator [1.4085555227308877]
We report on the integration of near-transform-limited silicon defects into microdisk resonators fabricated in a CMOS-compatible 4H-Silicon Carbide-on-Insulator platform.
We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode.
arXiv Detail & Related papers (2022-02-10T05:33:28Z) - Nanofabricated and integrated colour centres in silicon carbide with
high-coherence spin-optical properties [1.3246119976070139]
We demonstrate nanoscale fabrication of silicon vacancy centres (VSi) in 4H-SiC without deterioration of their intrinsic spin-optical properties.
We show nearly transform limited photon emission and record spin coherence times for single defects generated via ion implantation and in triangular cross section waveguides.
For the latter, we show further controlled operations on nearby nuclear spin qubits, which is crucial for fault-tolerant quantum information distribution.
arXiv Detail & Related papers (2021-09-10T08:42:14Z) - Inverted fine structure of a 6H-SiC qubit enabling robust spin-photon
interface [0.0]
A type of silicon vacancy qubits in 6H-SiC possesses an unusual inverted fine structure.
This results in the directional emission of light along the hexagonal crystallographic axis, making photon extraction more efficient.
Our experimental and theoretical approaches provide a deep insight into the optical and spin properties of atomic-scale qubits in SiC.
arXiv Detail & Related papers (2021-07-14T20:58:22Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Quantum photonics in triangular-cross-section nanodevices in silicon
carbide [4.26174272406905]
Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates.
We analyze optimal color center positioning within the modes of these devices.
We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics.
arXiv Detail & Related papers (2020-12-04T01:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.