論文の概要: Towards an AI Accountability Policy
- arxiv url: http://arxiv.org/abs/2307.13658v1
- Date: Tue, 25 Jul 2023 17:09:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 15:56:10.021783
- Title: Towards an AI Accountability Policy
- Title(参考訳): AIアカウンタビリティポリシーに向けて
- Authors: Przemyslaw Grabowicz, Nicholas Perello, Yair Zick
- Abstract要約: この白書は,米国国家電気通信情報局の「AI説明責任政策要求」に対する回答である。
コメントが要求された質問番号は、キー文の最後にスーパースクリプトで提供される。
- 参考スコア(独自算出の注目度): 12.008162348746087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This white paper is a response to the "AI Accountability Policy Request for
Comments" by the National Telecommunications and Information Administration of
the United States. The question numbers for which comments were requested are
provided in superscripts at the end of key sentences answering the respective
questions. The white paper offers a set of interconnected recommendations for
an AI accountability policy.
- Abstract(参考訳): この白書は、米国電気通信情報管理局(national telecommunications and information administration of the united states)の「aiアカウンタビリティポリシー要求(ai accountability policy request for comment)」に対する回答である。
各質問に回答するキー文の最後に、コメントが要求された質問番号がスーパースクリプトで提供される。
白書は、AI説明責任ポリシーのための相互接続されたレコメンデーションセットを提供する。
関連論文リスト
- Auto FAQ Generation [0.0]
本稿では,FAQ文書を生成するシステムを提案する。
既存のテキスト要約、テキストランクアルゴリズムによる文章ランキング、質問生成ツールを用いて、質問と回答の初期セットを作成します。
論文 参考訳(メタデータ) (2024-05-13T03:30:27Z) - Measuring the Quality of Answers in Political Q&As with Large Language Models [0.5261718469769449]
本稿では,政治質問・回答セッションにおける回答の質を評価するための新しいアプローチを提案する。
本稿では,初期質問を正確に推測できる度合いに基づいて,回答の品質を測定することを提案する。
論文 参考訳(メタデータ) (2024-04-12T21:16:53Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - Users are the North Star for AI Transparency [111.5679109784322]
透明な人工知能システムを求める声が広まっているにもかかわらず、この用語は、厳密な政策の目的や具体的な研究ラインのオリエント化を表すために、多義的な意味に過大評価されている。
このことが起こる理由の1つは、AI透明性の明確な理想が、この仕事の体で実現されないことである。
透明性はユーザ中心で、ユーザ指向で、誠実です。
論文 参考訳(メタデータ) (2023-03-09T18:53:29Z) - Discourse Analysis via Questions and Answers: Parsing Dependency
Structures of Questions Under Discussion [57.43781399856913]
この研究は、談話分析にQUD(Language framework of Questions Under discussion)を採用する。
我々は、文間の関係を、徹底的なきめ細かい質問とは対照的に、自由形式の質問として特徴づける。
完全文書上の質問の依存関係構造を導出する第一種QUDを開発する。
論文 参考訳(メタデータ) (2022-10-12T03:53:12Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
談話理解のためのモデルの構築と評価における重要な課題は、注釈付きデータの欠如である。
本稿では,ニュース文書の理解を目的としたスケーラブルなデータ収集を実現する新しいパラダイムを提案する。
得られたコーパスDCQAは、607の英語文書からなる22,430の質問応答ペアで構成されている。
論文 参考訳(メタデータ) (2021-11-01T04:50:26Z) - Privacy Policy Question Answering Assistant: A Query-Guided Extractive
Summarization Approach [18.51811191325837]
入力されたユーザクエリに応答して要約を抽出する自動プライバシポリシ質問応答アシスタントを提案する。
なぜなら、ユーザーはプライバシーに関する質問を、ポリシーの法的言語とは全く異なる言語で表現するからだ。
当社のパイプラインでは,プライバシQAデータセットのユーザクエリの89%に対して,回答を見つけています。
論文 参考訳(メタデータ) (2021-09-29T18:00:09Z) - Building and Evaluating Open-Domain Dialogue Corpora with Clarifying
Questions [65.60888490988236]
オープンドメインのシングルターンとマルチターンの会話に焦点を当てたデータセットをリリースする。
我々は最先端のニューラルベースラインをいくつかベンチマークする。
様々な対話における質問の明確化の質を評価するための,オフラインおよびオンラインのステップからなるパイプラインを提案する。
論文 参考訳(メタデータ) (2021-09-13T09:16:14Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z) - PolicyQA: A Reading Comprehension Dataset for Privacy Policies [77.79102359580702]
既存のWebサイトプライバシポリシ115のコーパスから算出した,25,017の理解スタイルの例を含むデータセットであるPolicyQAを提案する。
既存の2つのニューラルQAモデルを評価し、厳密な分析を行い、ポリシQAが提供する利点と課題を明らかにする。
論文 参考訳(メタデータ) (2020-10-06T09:04:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。