論文の概要: eXplainable Artificial Intelligence (XAI) in age prediction: A
systematic review
- arxiv url: http://arxiv.org/abs/2307.13704v1
- Date: Fri, 21 Jul 2023 18:06:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-30 03:56:32.955928
- Title: eXplainable Artificial Intelligence (XAI) in age prediction: A
systematic review
- Title(参考訳): 年齢予測におけるeXplainable Artificial Intelligence(XAI)の意義
- Authors: Alena Kalyakulina and Igor Yusipov
- Abstract要約: 年齢予測タスクへのXAIアプローチの適用について論じる。
我々は,身体システムによって組織された研究の体系的なレビューを行い,医療応用におけるXAIのメリットについて論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: eXplainable Artificial Intelligence (XAI) is now an important and essential
part of machine learning, allowing to explain the predictions of complex
models. XAI is especially required in risky applications, particularly in
health care, where human lives depend on the decisions of AI systems. One area
of medical research is age prediction and identification of biomarkers of aging
and age-related diseases. However, the role of XAI in the age prediction task
has not previously been explored directly. In this review, we discuss the
application of XAI approaches to age prediction tasks. We give a systematic
review of the works organized by body systems, and discuss the benefits of XAI
in medical applications and, in particular, in the age prediction domain.
- Abstract(参考訳): eXplainable Artificial Intelligence (XAI)は現在、機械学習の重要な部分であり、複雑なモデルの予測を説明することができる。
XAIは特にリスクの高いアプリケーション、特に人間の生活がAIシステムの決定に依存する医療において必要である。
医学研究の1つの領域は、年齢予測と年齢関連疾患のバイオマーカーの同定である。
しかし, 年齢予測タスクにおけるXAIの役割は, 直接的に検討されていない。
本稿では,年齢予測タスクへのXAIアプローチの適用について論じる。
我々は、身体システムによって組織された研究の体系的なレビューを行い、医療応用、特に年齢予測領域におけるXAIの利点について議論する。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - The Role of Explainable AI in Revolutionizing Human Health Monitoring [0.0]
説明可能なAI(XAI)は、より明確で、患者のケアを大幅に改善する可能性がある。
本稿では,パーキンソン病,脳卒中,うつ病,癌,心臓病,アルツハイマー病などの慢性疾患について概説する。
この論文は、ヒトの健康モニタリングにおけるXAIの課題と今後の研究機会を批判的に評価することで締めくくられる。
論文 参考訳(メタデータ) (2024-09-11T15:31:40Z) - Applications of Explainable artificial intelligence in Earth system science [12.454478986296152]
このレビューは、説明可能なAI(XAI)の基礎的な理解を提供することを目的としている。
XAIはモデルをより透明にする強力なツールセットを提供する。
我々は、地球系科学(ESS)において、XAIが直面する4つの重要な課題を識別する。
AIモデルは未知を探索し、XAIは説明を提供することでギャップを埋める。
論文 参考訳(メタデータ) (2024-06-12T15:05:29Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
論文 参考訳(メタデータ) (2024-04-17T17:49:38Z) - XAI meets Biology: A Comprehensive Review of Explainable AI in
Bioinformatics Applications [5.91274133032321]
説明可能なAI(XAI)は、バイオインフォマティクスにおけるAIモデルの透明性と解釈可能性を高めるための有望なソリューションとして登場した。
本総説では, バイオインフォマティクス分野における各種XAI技術とその応用について概説する。
論文 参考訳(メタデータ) (2023-12-11T03:08:18Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。