論文の概要: Fast algorithms for k-submodular maximization subject to a matroid
constraint
- arxiv url: http://arxiv.org/abs/2307.13996v1
- Date: Wed, 26 Jul 2023 07:08:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 13:18:35.200842
- Title: Fast algorithms for k-submodular maximization subject to a matroid
constraint
- Title(参考訳): マトロイド制約を受けるkサブモジュラー最大化のための高速アルゴリズム
- Authors: Shuxian Niu and Qian Liu and Yang Zhou and Min Li
- Abstract要約: マトロイド制約の下では、Threshold-Decreasing Algorithmを用いて$k$-submodular関数を最大化する。
我々は$k$-submodular関数に対して$(frac12 - epsilon)$-approximationアルゴリズムを与える。
- 参考スコア(独自算出の注目度): 10.270420338235237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we apply a Threshold-Decreasing Algorithm to maximize
$k$-submodular functions under a matroid constraint, which reduces the query
complexity of the algorithm compared to the greedy algorithm with little loss
in approximation ratio. We give a $(\frac{1}{2} - \epsilon)$-approximation
algorithm for monotone $k$-submodular function maximization, and a
$(\frac{1}{3} - \epsilon)$-approximation algorithm for non-monotone case, with
complexity $O(\frac{n(k\cdot EO + IO)}{\epsilon} \log \frac{r}{\epsilon})$,
where $r$ denotes the rank of the matroid, and $IO, EO$ denote the number of
oracles to evaluate whether a subset is an independent set and to compute the
function value of $f$, respectively. Since the constraint of total size can be
looked as a special matroid, called uniform matroid, then we present the fast
algorithm for maximizing $k$-submodular functions subject to a total size
constraint as corollaries. corollaries.
- Abstract(参考訳): 本稿では,matroid制約下でk$-submodular関数を最大化するためにしきい値切り下げアルゴリズムを適用し,近似比の少ないgreedyアルゴリズムと比較して,アルゴリズムのクエリの複雑さを低減した。
モノトンに対して$(\frac{1}{2} - \epsilon)$-approximation algorithm for monotone $k$-submodular function maximization, and a $(\frac{1}{3} - \epsilon)$-approximation algorithm for non-monotone case, with complexity $o(\frac{n(k\cdot eo + io)}{\epsilon} \log \frac{r}{\epsilon})$, ここで$r$はマトロイドのランクを表し、$io, eo$は、サブセットが独立集合であるかどうかを評価し、それぞれ$f$の関数値を計算するオラクルの数を表す。
総サイズ制約は一様マトロイドと呼ばれる特別なマトロイドと見なすことができるので、全サイズ制約の対象となる$k$-サブモジュラー関数を最大化するための高速アルゴリズムを提案する。
参列者。
関連論文リスト
- Discretely Beyond $1/e$: Guided Combinatorial Algorithms for Submodular Maximization [13.86054078646307]
制約のある、必ずしも単調な部分モジュラーでなくても、比が1/e$より大きい全ての既知の近似アルゴリズムは連続的な考えを必要とする。
アルゴリズムでは, 単純なランダム化グレディアルゴリズムを用いて, サイズとマトロイドの制約の双方について最もよく知られた近似比を求める。
論文 参考訳(メタデータ) (2024-05-08T16:39:59Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Dynamic Algorithms for Matroid Submodular Maximization [11.354502646593607]
マトロイドおよび濃度制約の下でのサブモジュラー複雑性は、機械学習、オークション理論、最適化における幅広い応用の問題である。
本稿では、これらの問題を動的に考慮し、モノトン部分モジュラ関数 $f: 2V rightarrow mathbbR+$ にアクセスでき、基底となる基底集合 $V$ の元の挿入と削除のシーケンス $calmathS$ が与えられる。
マトロイド制約下でのサブモジュラー問題に対する最初の完全動的アルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-06-01T17:54:15Z) - Linear Query Approximation Algorithms for Non-monotone Submodular
Maximization under Knapsack Constraint [16.02833173359407]
この研究は、2つの定数係数近似アルゴリズムを導入し、クナップサック制約の基底集合に対して非単調な部分モジュラーに対して線形なクエリ複雑性を持つ。
$mathsfDLA$は6+epsilon$の近似係数を提供する決定論的アルゴリズムであり、$mathsfRLA$は4+epsilon$の近似係数を持つランダム化アルゴリズムである。
論文 参考訳(メタデータ) (2023-05-17T15:27:33Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
次元自由な次元自由アルゴリズムを得るにはランダム化が必要であることを示す。
我々のアルゴリズムは、ReLUネットワークを最適化する最初の決定論的次元自由アルゴリズムを得る。
論文 参考訳(メタデータ) (2023-02-16T13:57:19Z) - Practical and Parallelizable Algorithms for Non-Monotone Submodular
Maximization with Size Constraint [20.104148319012854]
サイズ制約に関して、必ずしも単調ではない部分モジュラ函数に対して存在および並列化可能である。
最適な適応性とほぼ最適な複雑性クエリを持つアルゴリズムによって達成される最適な近似係数を、0.193 - varepsilon$に改善する。
論文 参考訳(メタデータ) (2020-09-03T22:43:55Z) - Revisiting Modified Greedy Algorithm for Monotone Submodular
Maximization with a Knapsack Constraint [75.85952446237599]
修正されたグリードアルゴリズムは、近似係数が0.305$であることを示す。
最適なデータ依存上界を導出する。
また、分岐やバウンドといったアルゴリズムの効率を大幅に改善するためにも使うことができる。
論文 参考訳(メタデータ) (2020-08-12T15:40:21Z) - Linear-Time Algorithms for Adaptive Submodular Maximization [17.19443570570189]
まず, 濃度制約を考慮した適応的部分モジュラー問題を提案する。
第二に、完全適応部分モジュラリティの概念を導入する。
提案アルゴリズムは,O(nlogfrac1epsilon)$関数の評価値のみを用いて,$frac1-1/e-epsilon4-2/e-2epsilon$近似比を実現する。
論文 参考訳(メタデータ) (2020-07-08T15:54:28Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - Continuous Submodular Maximization: Beyond DR-Submodularity [48.04323002262095]
最初に、バニラ座標の昇華の単純な変種を証明し、Coordinate-Ascent+ と呼ぶ。
次にCoordinate-Ascent++を提案し、同じ回数のイテレーションを実行しながら(1-1/e-varepsilon)$-approximationを保証する。
Coordinate-Ascent++の各ラウンドの計算は容易に並列化でき、マシン当たりの計算コストは$O(n/sqrtvarepsilon+nlog n)$である。
論文 参考訳(メタデータ) (2020-06-21T06:57:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。