論文の概要: Emerging Statistical Machine Learning Techniques for Extreme Temperature
Forecasting in U.S. Cities
- arxiv url: http://arxiv.org/abs/2307.14285v1
- Date: Wed, 26 Jul 2023 16:38:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 11:50:24.169107
- Title: Emerging Statistical Machine Learning Techniques for Extreme Temperature
Forecasting in U.S. Cities
- Title(参考訳): 米国の都市における極低温予測のための新しい統計的機械学習技術
- Authors: Kameron B. Kinast and Ernest Fokou\'e
- Abstract要約: 本稿では,新しい統計機械学習技術を用いた極端温度パターンの包括的解析を行う。
これらの手法を、最も人口の多い5つの米国都市の気候時系列データに適用する。
本研究は, 統計的手法の違いを強調し, 最も効果的なアプローチとして多層パーセプトロンを同定した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a comprehensive analysis of extreme temperature
patterns using emerging statistical machine learning techniques. Our research
focuses on exploring and comparing the effectiveness of various statistical
models for climate time series forecasting. The models considered include
Auto-Regressive Integrated Moving Average, Exponential Smoothing, Multilayer
Perceptrons, and Gaussian Processes. We apply these methods to climate time
series data from five most populated U.S. cities, utilizing Python and Julia to
demonstrate the role of statistical computing in understanding climate change
and its impacts. Our findings highlight the differences between the statistical
methods and identify Multilayer Perceptrons as the most effective approach.
Additionally, we project extreme temperatures using this best-performing
method, up to 2030, and examine whether the temperature changes are greater
than zero, thereby testing a hypothesis.
- Abstract(参考訳): 本稿では,新しい統計的機械学習技術を用いて,極端温度パターンの包括的解析を行う。
本研究は,気候時系列予測における各種統計モデルの有効性の探索と比較に焦点をあてる。
これらのモデルには、自己回帰的統合移動平均、指数的平滑化、多層パーセプトロン、ガウス過程が含まれる。
我々は,これらの手法を,最も人口の多い5つの米国都市の時系列データに適用し,PythonとJuliaを利用して,気候変動とその影響を理解する上での統計計算の役割を実証する。
本研究は, 統計的手法の違いを強調し, 最も効果的なアプローチとして多層パーセプトロンを同定した。
さらに, この最適性能法を用いて極端温度を2030年まで予測し, 温度変化が0より大きいかどうかを検証し, 仮説を検証した。
関連論文リスト
- Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Fine-tune your Classifier: Finding Correlations With Temperature [2.071516130824992]
我々は、データセットを表現に計算された統計の集合として記述することで、分類タスクに対する温度の影響を分析する。
これらの抽出された統計値と観測された最適温度との相関について検討した。
論文 参考訳(メタデータ) (2022-10-18T09:48:46Z) - MLRM: A Multiple Linear Regression based Model for Average Temperature
Prediction of A Day [3.6704226968275258]
我々は,過去の気象データと複数の線形回帰モデルを用いて,地域の天気を予測することを目的としている。
このモデルは摂氏2.8度の誤差で1日の平均気温を予測できる。
論文 参考訳(メタデータ) (2022-03-11T10:22:57Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
我々は、完全に結合した地球モデルから毎日の降水量をエミュレートする2つの「緩やかな条件付き」ジェネレーターネットワーク(GAN)を訓練する。
GANは時間的なサンプルを作り出すために訓練されます:地球を区別する64x128規則的な格子上の沈殿物の32日。
当社の訓練を受けたGANは、大幅に削減された計算コストで多数の実現を迅速に生成できます。
論文 参考訳(メタデータ) (2021-04-29T02:10:08Z) - ClimAlign: Unsupervised statistical downscaling of climate variables via
normalizing flows [0.7734726150561086]
変分推論の正規化における最近の研究の適応を用いた、教師なし、生成的ダウンスケーリングの新しい手法であるClimAlignを提案する。
提案手法は,高分解能および低分解能空間場上の関節分布からの条件および非条件サンプリングを同時に行うとともに,既存の教師付きダウンスケーリング手法に匹敵する予測性能を実現する。
論文 参考訳(メタデータ) (2020-08-11T13:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。