論文の概要: MLRM: A Multiple Linear Regression based Model for Average Temperature
Prediction of A Day
- arxiv url: http://arxiv.org/abs/2203.05835v1
- Date: Fri, 11 Mar 2022 10:22:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-14 17:59:08.346775
- Title: MLRM: A Multiple Linear Regression based Model for Average Temperature
Prediction of A Day
- Title(参考訳): mlrm:1日の平均気温予測のための多重線形回帰モデル
- Authors: Ishu Gupta and Harsh Mittal and Deepak Rikhari and Ashutosh Kumar
Singh
- Abstract要約: 我々は,過去の気象データと複数の線形回帰モデルを用いて,地域の天気を予測することを目的としている。
このモデルは摂氏2.8度の誤差で1日の平均気温を予測できる。
- 参考スコア(独自算出の注目度): 3.6704226968275258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weather is a phenomenon that affects everything and everyone around us on a
daily basis. Weather prediction has been an important point of study for
decades as researchers have tried to predict the weather and climatic changes
using traditional meteorological techniques. With the advent of modern
technologies and computing power, we can do so with the help of machine
learning techniques. We aim to predict the weather of an area using past
meteorological data and features using the Multiple Linear Regression Model.
The performance of the model is evaluated and a conclusion is drawn. The model
is successfully able to predict the average temperature of a day with an error
of 2.8 degrees Celsius.
- Abstract(参考訳): 天気は、私たちの周りのすべての人々に影響を与える現象です。
気象予報は何十年も前から重要な研究ポイントであり、研究者は従来の気象技術を使って天気や気候の変化を予測しようとしてきた。
現代の技術とコンピューティング能力の出現により、機械学習技術の助けを借りてそれを実現できる。
我々は,過去の気象データと複数の線形回帰モデルを用いて,地域の天気を予測することを目的としている。
モデルの性能を評価し、結論を導出する。
このモデルは摂氏2.8度の誤差で1日の平均気温を予測することに成功した。
関連論文リスト
- Robustness of AI-based weather forecasts in a changing climate [1.4779266690741741]
現状の機械学習モデルは、現在の気候における天気予報のために訓練されたものであり、様々な気候状態において熟練した予測をもたらすことを示す。
現在の制限にもかかわらず、我々の結果は、データ駆動機械学習モデルが気候科学に強力なツールを提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-27T08:11:49Z) - WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
我々は,地球近傍の地表面観測から得られた気象予報のための新しいベンチマークデータセットであるWeatherRealを紹介する。
本稿では,データセットの基盤となる情報源と処理手法を詳述するとともに,超局地的・極端な気象観測におけるその場観測の利点について述べる。
私たちの研究は、AIベースの天気予報研究を、よりアプリケーション中心で運用対応のアプローチへと進めることを目的としています。
論文 参考訳(メタデータ) (2024-09-14T08:53:46Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
本稿では,複数の気象観測所の過去のデータを利用して,シンプルな機械学習モデルを訓練する天気予報手法を提案する。
モデルの精度は、現在の最先端技術と併用するのに十分である。
論文 参考訳(メタデータ) (2020-08-25T02:41:32Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。