A Hybrid Machine Learning Model for Classifying Gene Mutations in Cancer using LSTM, BiLSTM, CNN, GRU, and GloVe
- URL: http://arxiv.org/abs/2307.14361v3
- Date: Mon, 20 May 2024 16:55:07 GMT
- Title: A Hybrid Machine Learning Model for Classifying Gene Mutations in Cancer using LSTM, BiLSTM, CNN, GRU, and GloVe
- Authors: Sanad Aburass, Osama Dorgham, Jamil Al Shaqsi,
- Abstract summary: We introduce a novel hybrid ensemble model that synergistically combines LSTM, BiLSTM, CNN, GRU, and GloVe embeddings for the classification of gene mutations in cancer.
Our approach achieved a training accuracy of 80.6%, precision of 81.6%, recall of 80.6%, and an F1 score of 83.1%, alongside a significantly reduced Mean Squared Error (MSE) of 2.596.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In our study, we introduce a novel hybrid ensemble model that synergistically combines LSTM, BiLSTM, CNN, GRU, and GloVe embeddings for the classification of gene mutations in cancer. This model was rigorously tested using Kaggle's Personalized Medicine: Redefining Cancer Treatment dataset, demonstrating exceptional performance across all evaluation metrics. Notably, our approach achieved a training accuracy of 80.6%, precision of 81.6%, recall of 80.6%, and an F1 score of 83.1%, alongside a significantly reduced Mean Squared Error (MSE) of 2.596. These results surpass those of advanced transformer models and their ensembles, showcasing our model's superior capability in handling the complexities of gene mutation classification. The accuracy and efficiency of gene mutation classification are paramount in the era of precision medicine, where tailored treatment plans based on individual genetic profiles can dramatically improve patient outcomes and save lives. Our model's remarkable performance highlights its potential in enhancing the precision of cancer diagnoses and treatments, thereby contributing significantly to the advancement of personalized healthcare.
Related papers
- Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Unlocking the Power of Multi-institutional Data: Integrating and Harmonizing Genomic Data Across Institutions [3.5489676012585236]
We introduce the Bridge model to derive integrated features to preserve information beyond common genes.
The model consistently excels in predicting patient survival across six cancer types in GENIE BPC data.
arXiv Detail & Related papers (2024-01-30T23:25:05Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Fuzzy Gene Selection and Cancer Classification Based on Deep Learning
Model [1.3072222152900117]
We developed a new fuzzy gene selection technique (FGS) to identify informative genes to facilitate cancer classification.
With our FGS-enhanced method, the cancer classification model achieved 96.5%,96.2%,96%, and 95.9% for accuracy, precision, recall, and f1-score respectively.
In examining the six datasets that were used, the proposed model demonstrates it's capacity to classify cancer effectively.
arXiv Detail & Related papers (2023-05-04T21:52:57Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - A robust and lightweight deep attention multiple instance learning
algorithm for predicting genetic alterations [4.674211520843232]
We propose a novel Attention-based Multiple Instance Mutation Learning (AMIML) model for predicting gene mutations.
AMIML was comprised of successive 1-D convolutional layers, a decoder, and a residual weight connection to facilitate further integration of a lightweight attention mechanism.
AMIML demonstrated excellent robustness, not only outperforming all the five baseline algorithms in the vast majority of the tested genes, but also providing near-best-performance for the other seven genes.
arXiv Detail & Related papers (2022-05-31T15:45:29Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
We introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers.
Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm.
Our signature reports promising results on distinguishing immune inflammatory and immune desert tumors.
arXiv Detail & Related papers (2021-02-11T09:04:45Z) - Comparisons of Graph Neural Networks on Cancer Classification Leveraging
a Joint of Phenotypic and Genetic Features [7.381190270069632]
We evaluated variousgraph neural networks (GNNs) leveraging a joint of phenotypic and genetic features for cancer typeclassification.
Among GNNs, ChebNet, GraphSAGE, and TAGCN showed the best performance, while GATshowed the worst.
arXiv Detail & Related papers (2021-01-14T20:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.