Comparative Analysis of Machine Learning Models for Lung Cancer Mutation Detection and Staging Using 3D CT Scans
- URL: http://arxiv.org/abs/2505.22592v1
- Date: Wed, 28 May 2025 17:04:35 GMT
- Title: Comparative Analysis of Machine Learning Models for Lung Cancer Mutation Detection and Staging Using 3D CT Scans
- Authors: Yiheng Li, Francisco Carrillo-Perez, Mohammed Alawad, Olivier Gevaert,
- Abstract summary: Lung cancer is the leading cause of cancer worldwide, mortality and non-invasive methods for detecting key mutations and staging are essential for improving patient outcomes.<n>Here, we compare the performance of two machine learning models - FMCIB+XGBoost, a supervised model with domain-specific pretraining, and Dinov2+ABMIL, a self-supervised model with attention-based multiple-instance learning.
- Score: 2.287415292857564
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lung cancer is the leading cause of cancer mortality worldwide, and non-invasive methods for detecting key mutations and staging are essential for improving patient outcomes. Here, we compare the performance of two machine learning models - FMCIB+XGBoost, a supervised model with domain-specific pretraining, and Dinov2+ABMIL, a self-supervised model with attention-based multiple-instance learning - on 3D lung nodule data from the Stanford Radiogenomics and Lung-CT-PT-Dx cohorts. In the task of KRAS and EGFR mutation detection, FMCIB+XGBoost consistently outperformed Dinov2+ABMIL, achieving accuracies of 0.846 and 0.883 for KRAS and EGFR mutations, respectively. In cancer staging, Dinov2+ABMIL demonstrated competitive generalization, achieving an accuracy of 0.797 for T-stage prediction in the Lung-CT-PT-Dx cohort, suggesting SSL's adaptability across diverse datasets. Our results emphasize the clinical utility of supervised models in mutation detection and highlight the potential of SSL to improve staging generalization, while identifying areas for enhancement in mutation sensitivity.
Related papers
- Enhancing Lung Disease Diagnosis via Semi-Supervised Machine Learning [0.0]
Lung diseases, including lung cancer and COPD, are significant health concerns globally.<n>This study investigates the use of semi supervised learning methods for lung sound signal detection using a model combination of MFCC+CNN.
arXiv Detail & Related papers (2025-07-20T19:10:24Z) - Predicting Survivability of Cancer Patients with Metastatic Patterns Using Explainable AI [2.6182192515316247]
This study leverages machine learning (ML) to predict the survivability of cancer patients with metastatic patterns.<n>MSK-MET dataset includes genomic and clinical data from 25,775 patients across 27 cancer types.<n>XGBoost emerged as the best performer with an area under the curve (AUC) of 0.82.
arXiv Detail & Related papers (2025-04-07T20:48:15Z) - Predicting Targeted Therapy Resistance in Non-Small Cell Lung Cancer Using Multimodal Machine Learning [0.5116003548817487]
Lung cancer is the primary cause of cancer death globally, with non-small cell lung cancer (NSCLC) emerging as its most prevalent subtype.<n>Osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (TKI), has demonstrated remarkable efficacy in the treatment of NSCLC patients.<n>Despite its established efficacy, drug resistance poses a significant challenge for patients to fully benefit from osimertinib.
arXiv Detail & Related papers (2025-03-31T14:47:02Z) - Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
This research evaluates a deep learning model designed to detect lung cancer, specifically pulmonary nodules, along with eight other lung pathologies, using chest radiographs.<n>A two-stage classification system, utilizing ensemble methods and transfer learning, is employed to first triage images into Normal or Abnormal.<n>The model achieves notable results in classification, with a top-performing accuracy of 77%, a sensitivity of 0.713, a specificity of 0.776 during external validation, and an AUC score of 0.888.
arXiv Detail & Related papers (2024-12-16T11:47:07Z) - Variational Autoencoders for Feature Exploration and Malignancy
Prediction of Lung Lesions [0.0]
Lung cancer is responsible for 21% of cancer deaths in the UK.
Recent studies have demonstrated the capability of AI methods for accurate and early diagnosis of lung cancer from routine scans.
This study investigates the application Variational Autoencoders (VAEs), a type of generative AI model, to lung cancer lesions.
arXiv Detail & Related papers (2023-11-27T11:12:33Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
We propose a novel framework Two-Stage Generative Model (TSGM) to improve brain tumor detection and segmentation.
CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior.
VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide.
arXiv Detail & Related papers (2023-11-06T12:58:26Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - A Hybrid Machine Learning Model for Classifying Gene Mutations in Cancer using LSTM, BiLSTM, CNN, GRU, and GloVe [0.0]
We introduce a novel hybrid ensemble model that synergistically combines LSTM, BiLSTM, CNN, GRU, and GloVe embeddings for the classification of gene mutations in cancer.
Our approach achieved a training accuracy of 80.6%, precision of 81.6%, recall of 80.6%, and an F1 score of 83.1%, alongside a significantly reduced Mean Squared Error (MSE) of 2.596.
arXiv Detail & Related papers (2023-07-24T21:01:46Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Deep learning-based approach to reveal tumor mutational burden status
from whole slide images across multiple cancer types [41.61294299606317]
Tumor mutational burden (TMB) is a potential genomic biomarker of immunotherapy.
TMB detected through whole exome sequencing lacks clinical penetration in low-resource settings.
In this study, we proposed a multi-scale deep learning framework to address the detection of TMB status from routinely used whole slide images.
arXiv Detail & Related papers (2022-04-07T07:02:32Z) - CAE-Transformer: Transformer-based Model to Predict Invasiveness of Lung
Adenocarcinoma Subsolid Nodules from Non-thin Section 3D CT Scans [36.093580055848186]
Lung Adenocarcinoma (LAUC) has recently been the most prevalent.
Timely and accurate knowledge of the invasiveness of lung nodules leads to a proper treatment plan and reduces the risk of unnecessary or late surgeries.
The primary imaging modality to assess and predict the invasiveness of LAUCs is the chest CT.
In this paper, a predictive transformer-based framework, referred to as the "CAE-Transformer", is developed to classify LAUCs.
arXiv Detail & Related papers (2021-10-17T04:37:24Z) - COVID-MTL: Multitask Learning with Shift3D and Random-weighted Loss for
Automated Diagnosis and Severity Assessment of COVID-19 [39.57518533765393]
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19.
We present an end-to-end multitask learning framework (COVID-MTL) that is capable of automated and simultaneous detection (against both radiology and NAT) and severity assessment of COVID-19.
arXiv Detail & Related papers (2020-12-10T08:30:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.