論文の概要: A Framework for LLM-powered Design Assistants
- arxiv url: http://arxiv.org/abs/2502.07698v1
- Date: Tue, 11 Feb 2025 16:51:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:22.906219
- Title: A Framework for LLM-powered Design Assistants
- Title(参考訳): LLMを利用したデザインアシスタントのためのフレームワーク
- Authors: Swaroop Panda,
- Abstract要約: 大規模言語モデル(LLM)は、人間の言語に似たテキストを分析し、生成するために設計されたAIシステムである。
本研究では,設計プロセスにおける3つの重要なモダリティ,理想探索,設計者との対話,設計評価に焦点を当て,LLMをデザインアシスタントとして採用するフレームワークを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Design assistants are frameworks, tools or applications intended to facilitate both the creative and technical facets of design processes. Large language models (LLMs) are AI systems engineered to analyze and produce text resembling human language, leveraging extensive datasets. This study introduces a framework wherein LLMs are employed as Design Assistants, focusing on three key modalities within the Design Process: Idea Exploration, Dialogue with Designers, and Design Evaluation. Importantly, our framework is not confined to a singular design process but is adaptable across various processes.
- Abstract(参考訳): デザインアシスタント(Design Assistant)は、デザインプロセスの創造的側面と技術的側面の両方を促進するためのフレームワーク、ツール、あるいはアプリケーションである。
大規模言語モデル(LLM)は、人間の言語に似たテキストを分析し、生成するために設計されたAIシステムである。
本研究では,設計プロセスにおける3つの重要なモダリティ,理想探索,設計者との対話,設計評価に焦点を当て,LLMをデザインアシスタントとして採用するフレームワークを紹介する。
重要なことは、我々のフレームワークは特異な設計プロセスに限らず、様々なプロセスに適応できるということです。
関連論文リスト
- GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts [53.568057283934714]
コンテンツ対応のテキストロゴレイアウトを生成するVLMベースのフレームワークを提案する。
本稿では,複数のグリフ画像の同時処理における計算量を削減するための2つのモデル手法を提案する。
アウトモデルのインストラクションチューニングを支援するために,既存の公開データセットよりも5倍大きい2つの拡張テキストロゴデータセットを構築した。
論文 参考訳(メタデータ) (2024-11-18T10:04:10Z) - MetaDesigner: Advancing Artistic Typography Through AI-Driven, User-Centric, and Multilingual WordArt Synthesis [65.78359025027457]
MetaDesignerがLarge Language Models(LLM)を利用したアートタイポグラフィーのための変換フレームワークを導入
その基盤は、Pipeline、Glyph、Textureエージェントで構成されるマルチエージェントシステムであり、カスタマイズ可能なWordArtの作成をまとめてオーケストレーションしている。
論文 参考訳(メタデータ) (2024-06-28T11:58:26Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
本研究では,グラフィックレイアウトの自動生成のための統合フレームワークを提案する。
データ駆動方式では、レイアウトを生成するために構造化テキスト(JSONフォーマット)とビジュアルインストラクションチューニングを用いる。
我々は,ユーザのデザイン意図に基づいて編集可能なポスターを生成する自動テキスト投稿システムを開発した。
論文 参考訳(メタデータ) (2024-06-05T03:05:52Z) - Automatic Layout Planning for Visually-Rich Documents with Instruction-Following Models [81.6240188672294]
グラフィックデザインでは、プロでないユーザは、限られたスキルとリソースのために視覚的に魅力的なレイアウトを作成するのに苦労することが多い。
レイアウト計画のための新しいマルチモーダル・インストラクション・フォロー・フレームワークを導入し、視覚的要素をカスタマイズしたレイアウトに簡単に配置できるようにする。
本手法は,非専門職の設計プロセスを単純化するだけでなく,数ショット GPT-4V モデルの性能を上回り,mIoU は Crello で 12% 向上する。
論文 参考訳(メタデータ) (2024-04-23T17:58:33Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Designはパーソナライズされたインテリアデザイナで、自然言語によるコミュニケーションを通じて設計目標の生成と視覚化を可能にする。
I-Designは、対話や論理的推論に従事する大きな言語モデルエージェントのチームから始まる。
最終的な設計は、既存のオブジェクトデータベースから資産を取り出し、統合することで、3Dで構築されます。
論文 参考訳(メタデータ) (2024-04-03T16:17:53Z) - DesignGPT: Multi-Agent Collaboration in Design [4.6272626111555955]
DesignGPTは人工知能エージェントを使用して、デザイン会社におけるさまざまなポジションの役割をシミュレートし、人間のデザイナーが自然言語で協力できるようにする。
実験の結果、DesignGPTはAIツールを別々に比較すると、デザイナのパフォーマンスが向上することがわかった。
論文 参考訳(メタデータ) (2023-11-20T08:05:52Z) - Experiments on Generative AI-Powered Parametric Modeling and BIM for
Architectural Design [4.710049212041078]
この研究は、3Dアーキテクチャ設計におけるChatGPTと生成AIの可能性について実験した。
このフレームワークはアーキテクトに設計意図を伝えるための直感的で強力な方法を提供する。
論文 参考訳(メタデータ) (2023-08-01T01:51:59Z) - How Can Large Language Models Help Humans in Design and Manufacturing? [28.28959612862582]
GPT-4を含む大規模言語モデル(LLM)は、生成設計にエキサイティングな新しい機会を提供する。
テキストベースのプロンプトを設計仕様に変換すること、設計を設計指示に変換すること、設計空間と設計のバリエーションを作り出すこと、設計の性能を計算し、性能を規定した設計を探すこと、などである。
これらの制限を明らかにすることで、これらのモデルの継続的な改善と進歩を触媒することを目指しています。
論文 参考訳(メタデータ) (2023-07-25T17:30:38Z) - Exploring Challenges and Opportunities to Support Designers in Learning
to Co-create with AI-based Manufacturing Design Tools [31.685493295306387]
AIベースのデザインツールは、複雑な製造や設計タスクでエンジニアリングや工業デザイナーを支援するために、プロのソフトウェアで急速に普及している。
これらのツールは、伝統的なコンピュータ支援デザインツールよりもエージェント的な役割を担い、しばしば「コ・クリエーター」として表現される。
これまでのところ、エンジニアリングデザイナがAIベースのデザインツールでどのように働くかはほとんどわかっていません。
論文 参考訳(メタデータ) (2023-03-01T02:57:05Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
設計者は、与えられた目的の集合を最大化する設計パラメータの組み合わせを見つけるよう求められる設計最適化タスクに苦労すると言われている。
モデルベースの計算設計アルゴリズムは、設計中に設計例を生成することでデザイナを支援する。
一方、補助のためのブラックボックスメソッドは、あらゆる設計問題に対処できる。
論文 参考訳(メタデータ) (2022-04-15T20:40:43Z) - Creating User Interface Mock-ups from High-Level Text Descriptions with
Deep-Learning Models [19.63933191791183]
自然言語句から低忠実度UIモックアップを作成するための3つのディープラーニング技術を紹介する。
一貫性のある多種多様なUI設計モックアップを提案する各手法の能力を定量的に、質的に比較し、対比する。
論文 参考訳(メタデータ) (2021-10-14T23:48:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。