論文の概要: State preparation by shallow circuits using feed forward
- arxiv url: http://arxiv.org/abs/2307.14840v3
- Date: Tue, 05 Nov 2024 10:29:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:56:20.882269
- Title: State preparation by shallow circuits using feed forward
- Title(参考訳): フィードフォワードを用いた浅部回路による状態形成
- Authors: Harry Buhrman, Marten Folkertsma, Bruno Loff, Niels M. P. Neumann,
- Abstract要約: 我々は,この4ステップ方式を用いて,フォールトトレラントな計算を行わず,短い,一定の深さの量子回路を強化する。
LAQCC回路は、一定の深さの量子回路では達成できない長距離相互作用を創出できることを示す。
我々は、任意の数の状態に対する一様重ね合わせのための3つの新しい状態準備プロトコルを作成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In order to achieve fault-tolerant quantum computation, we need to repeat the following sequence of four steps: First, perform 1 or 2 qubit quantum gates (in parallel if possible). Second, do a syndrome measurement on a subset of the qubits. Third, perform a fast classical computation to establish which errors have occurred (if any). Fourth, depending on the errors, we apply a correction step. Then the procedure repeats with the next sequence of gates. In order for these four steps to succeed, we need the error rate of the gates to be below a certain threshold. Unfortunately, the error rates of current quantum hardware are still too high. On the other hand, current quantum hardware platforms are designed with these four steps in mind. In this work we make use of this four-step scheme not to carry out fault-tolerant computations, but to enhance short, constant-depth, quantum circuits that perform 1 qubit gates and nearest-neighbor 2 qubit gates. To explore how this can be useful, we study a computational model which we call Local Alternating Quantum Classical Computations (LAQCC). In this model, qubits are placed in a grid allowing nearest neighbor interactions; the quantum circuits are of constant depth with intermediate measurements; a classical controller can perform log-depth computations on these intermediate measurement outcomes to control future quantum operations. This model fits naturally between quantum algorithms in the NISQ era and full fledged fault-tolerant quantum computation. We show that LAQCC circuits can create long-ranged interactions, which constant-depth quantum circuits cannot achieve, and use it to construct a range of useful multi-qubit gates. With these gates, we create three new state preparation protocols for a uniform superposition over an arbitrary number of states, W-states, Dicke states and may-body scar states.
- Abstract(参考訳): フォールトトレラントな量子計算を実現するためには、まず1または2キュービットの量子ゲートを(可能な限り並列に)実行する4つのステップを繰り返す必要がある。
次に、量子ビットの部分集合におけるシンドロームの測定を行う。
第3に、(もしあれば)どのエラーが発生したかを確立するために、高速な古典計算を実行する。
第4に,誤差に応じて補正ステップを適用する。
次に、手順は次のゲート列で繰り返される。
これら4つのステップが成功するためには、ゲートの誤差率を一定の閾値以下にする必要がある。
残念ながら、現在の量子ハードウェアのエラー率はまだ高すぎる。
一方、現在の量子ハードウェアプラットフォームは、これらの4つのステップを念頭に設計されている。
本研究では, フォールトトレラント計算を行なわずに, 1キュービットゲートと近傍2キュービットゲートを実行する, 短い, 一定の深さの量子回路を強化するために, この4ステップ方式を用いる。
そこで本研究では,局所交互量子古典計算(LAQCC)と呼ばれる計算モデルについて検討する。
このモデルでは、量子ビットは近接する隣り合う相互作用を許容するグリッドに配置され、量子回路は中間測定値と一定深さであり、古典的なコントローラはこれらの中間測定結果の対数深度計算を行い、将来の量子演算を制御する。
このモデルは、NISQ時代の量子アルゴリズムと完全なフォールトトレラント量子計算の間に自然に適合する。
LAQCC回路は、一定の深さの量子回路では達成できない長範囲の相互作用を生成できることを示す。
これらのゲートを用いて、任意の数の状態、W状態、Dicke状態、May-bodyスカー状態に対する均一な重ね合わせのための3つの新しい状態準備プロトコルを作成する。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Optimal Partitioning of Quantum Circuits using Gate Cuts and Wire Cuts [1.0507729375838437]
量子ビット数の制限、高いエラー率、限られた量子ビット接続は、効率的な短期量子計算の大きな課題である。
量子回路分割は、量子計算を小さな量子(サブ)回路と古典的な後処理ステップを含む一連の計算に分割する。
量子回路編み込みの最近の進歩に基づく最適分割法を開発した。
論文 参考訳(メタデータ) (2023-08-18T13:59:55Z) - Optimal Qubit Reuse for Near-Term Quantum Computers [0.18188255328029254]
短期量子コンピュータにおける中間回路計測と量子ビットリセットのサポートの増加は、量子ビットの再利用を可能にする。
本稿では,立証可能な最適解を提供する量子ビット再利用最適化の形式モデルを提案する。
本研究では, 量子回路の量子ビット数, スワップゲート挿入数, 推定成功確率, ヘルリンガー忠実度の改善について述べる。
論文 参考訳(メタデータ) (2023-07-31T23:15:45Z) - Comparing planar quantum computing platforms at the quantum speed limit [0.0]
我々は、中性原子および超伝導量子ビットにおける現実的な2量子および多量子ゲート実装のための量子速度制限(QSL)の理論最小ゲート時間の比較を示す。
我々はこれらの量子アルゴリズムを、標準ゲートモデルとパリティマッピングの両方において、回路実行時間とゲート数の観点から解析する。
論文 参考訳(メタデータ) (2023-04-04T12:47:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
ボソニックモード超伝導回路におけるコヒーレント状態量子プロセストモグラフィ(csQPT)の使用を実証する。
符号化量子ビット上の変位とSNAP演算を用いて構築した論理量子ゲートを特徴付けることにより,本手法の結果を示す。
論文 参考訳(メタデータ) (2023-03-02T18:08:08Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - $i$-QER: An Intelligent Approach towards Quantum Error Reduction [5.055934439032756]
量子回路のエラーを評価するスケーラブルな機械学習ベースのアプローチである$i$-QERを導入する。
i$-QERは、教師付き学習モデルを使用して、与えられた量子回路で可能なエラーを予測する。
これにより、大きな量子回路を2つの小さなサブ回路に分割する。
論文 参考訳(メタデータ) (2021-10-12T20:45:03Z) - Moving Quantum States without SWAP via Intermediate Higher Dimensional
Qudits [3.5450828190071646]
本稿では,SWAP操作を使わずに移動量子状態の新たな定式化を導入する。
量子状態の量子ビットによる移動は、一時的な中間クエット状態の採用によって達成されている。
論文 参考訳(メタデータ) (2021-06-16T19:21:53Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。