Pointwise bounds on confined states in non-relativistic QED
- URL: http://arxiv.org/abs/2307.14986v3
- Date: Mon, 10 Feb 2025 14:56:30 GMT
- Title: Pointwise bounds on confined states in non-relativistic QED
- Authors: M. Griesemer, V. Kußmaul,
- Abstract summary: We show that eigenstates satisfy a subsolution estimate in non-relativistic quantum electrodynamics.
We also give a proof of pointwise exponential decay in the electronic configuration.
- Score: 0.0
- License:
- Abstract: Kato's well known distributional inequality for the magnetic Laplacian holds equally in the more general setting of non-relativistic quantum electrodynamics (QED), where the wave function is vector-valued and the vector potential is quantized. We give two new applications of this result: First, we show that eigenstates satisfy a subsolution estimate. Second, for general states, with energy distribution strictly below the ionization threshold, we give a short proof of pointwise exponential decay in the electronic configuration.
Related papers
- Quantum optical scattering by macroscopic lossy objects: A general approach [55.2480439325792]
We develop a general approach to describe the scattering of quantum light by a lossy macroscopic object placed in vacuum.
We exploit the input-output relation to connect the output state of the field to the input one.
We analyze the impact of the classical transmission and absorption dyadics on the transitions from ingoing to outgoing s-polariton.
arXiv Detail & Related papers (2024-11-27T17:44:29Z) - Completeness of Energy Eigenfunctions for the Reflectionless Potential in Quantum Mechanics [0.0]
We prove that the set of bound (discrete) states together with the scattering (continuum) states of the reflectionless potential form a complete set.
In the case of a single bound state, the corresponding wave function can be found from the knowledge of continuum eigenstates of the system.
arXiv Detail & Related papers (2024-11-22T13:53:55Z) - Many-Body Quantum Geometric Dipole [0.0]
Collective excitations of many-body electron systems can carry internal structure, tied to the quantum geometry of the Hilbert space in which they are embedded.
We demonstrate in this work that this property can be formulated in a generic way, which does not require wavefunctions expressed in terms of single particle-hole states.
Our study demonstrates that the QGD is an intrinsic property of collective modes which is valid beyond approximations one might make for their wavefunctions.
arXiv Detail & Related papers (2024-06-17T21:01:03Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - The Potential Inversion Theorem [0.0]
We prove the potential inversion theorem, which says that wavefunction probability in these models is preserved under the sign inversion of the potential energy.
We show how the potential inversion theorem illustrates several seemingly unrelated physical phenomena, including Bloch oscillations, localization, particle-hole symmetry, negative potential scattering, and magnetism.
arXiv Detail & Related papers (2023-05-12T05:32:53Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Driven anti-Bragg subradiant states in waveguide quantum electrodynamics [91.3755431537592]
We study theoretically driven quantum dynamics in periodic arrays of two-level qubits coupled to the waveguide.
We demonstrate, that strongly subradiant eigenstates of the master equation for the density matrix emerge under strong coherent driving for arrays with the anti-Bragg periods.
arXiv Detail & Related papers (2022-02-21T11:36:55Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Excited states from eigenvector continuation: the anharmonic oscillator [58.720142291102135]
Eigenvector continuation (EC) has attracted a lot attention in nuclear structure and reactions as a variational resummation tool for many-body expansions.
This work is dedicated to a detailed understanding of the emergence of excited states from the eigenvector continuation approach.
arXiv Detail & Related papers (2021-08-05T19:28:25Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Eigenstate thermalization in dual-unitary quantum circuits: Asymptotics
of spectral functions [0.0]
The eigenstate thermalization hypothesis provides to date the most successful description of thermalization in isolated quantum systems.
We study the distribution of matrix elements for a class of operators in dual-unitary quantum circuits.
arXiv Detail & Related papers (2021-03-22T09:46:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.