Learnability transitions in monitored quantum dynamics via eavesdropper's classical shadows
- URL: http://arxiv.org/abs/2307.15011v3
- Date: Fri, 5 Apr 2024 18:29:15 GMT
- Title: Learnability transitions in monitored quantum dynamics via eavesdropper's classical shadows
- Authors: Matteo Ippoliti, Vedika Khemani,
- Abstract summary: We show that a measure of information flow from the quantum system to the classical measurement record undergoes a phase transition in correspondence with the measurement-induced phase transition (MIPT)
This transition determines the eavesdropper's (in)ability to learn properties of an unknown initial quantum state of the system.
We focus on three applications of interest: Pauli expectation values, many-body fidelity, and global charge in $U(1)$-symmetric dynamics.
- Score: 0.06640389895742692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitored quantum dynamics -- unitary evolution interspersed with measurements -- has recently emerged as a rich domain for phase structure in quantum many-body systems away from equilibrium. Here we study monitored dynamics from the point of view of an eavesdropper who has access to the classical measurement outcomes, but not to the quantum many-body system. We show that a measure of information flow from the quantum system to the classical measurement record -- the informational power -- undergoes a phase transition in correspondence with the measurement-induced phase transition (MIPT). This transition determines the eavesdropper's (in)ability to learn properties of an unknown initial quantum state of the system, given a complete classical description of the monitored dynamics and arbitrary classical computational resources. We make this learnability transition concrete by defining classical shadows protocols that the eavesdropper may apply to this problem, and show that the MIPT manifests as a transition in the sample complexity of various shadow estimation tasks, which become harder in the low-measurement phase. We focus on three applications of interest: Pauli expectation values (where we find the MIPT appears as a point of optimal learnability for typical Pauli operators), many-body fidelity, and global charge in $U(1)$-symmetric dynamics. Our work unifies different manifestations of the MIPT under the umbrella of learnability and gives this notion a general operational meaning via classical shadows.
Related papers
- Detecting Quantum and Classical Phase Transitions via Unsupervised Machine Learning of the Fisher Information Metric [0.0]
We develop an unsupervised machine learning (ML) method called ClassiFIM.
We find that ClassiFIM reliably detects both topological (e.g., XXZ chain) and dynamical (e.g., metal-insulator transition in Hubbard model) quantum phase transitions.
arXiv Detail & Related papers (2024-08-06T19:34:04Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Scrambling and operator entanglement in local non-Hermitian quantum
systems [0.0]
We study information scrambling and quantum chaos in non-Hermitian variants of paradigmatic local quantum spin-chain models.
We extend operator entanglement based diagnostics from previous works on closed and open quantum systems to the new arena of monitored quantum dynamics.
arXiv Detail & Related papers (2023-05-20T01:35:38Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Transitions in the learnability of global charges from local
measurements [0.3149883354098941]
We consider monitored quantum systems with a global conserved charge.
We ask how efficiently an observer ("eavesdropper") can learn the global charge of such systems from local projective measurements.
arXiv Detail & Related papers (2022-06-24T18:00:02Z) - Classical Tracking for Quantum Trajectories [1.284647943889634]
Quantum state estimation, based on the numerical integration of master equations (SMEs), provides estimates for the evolution of quantum systems.
We show that classical tracking methods based on particle filters can be used to track quantum states.
arXiv Detail & Related papers (2022-02-01T08:39:19Z) - Theory of classical metastability in open quantum systems [0.0]
We present a general theory of classical metastability in open quantum systems.
We show that classical dynamics is observed not only on average, but also at the level of individual quantum trajectories.
arXiv Detail & Related papers (2020-06-01T20:00:01Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.