Optimal Superpositions for Particle Detection via Quantum Phase
- URL: http://arxiv.org/abs/2307.15186v2
- Date: Sun, 24 Sep 2023 20:17:01 GMT
- Title: Optimal Superpositions for Particle Detection via Quantum Phase
- Authors: Eva Kilian, Marko Toro\v{s}, P.F. Barker, Sougato Bose
- Abstract summary: State of the art proposals for novel quantum sensors often rely on the creation of large superpositions.
We consider scattering interactions of directional particulate environments with a system in a quantum superposition.
We find that there is an "optimal superposition" size for measuring incoming particles via a relative phase.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploiting quantum mechanics for sensing offers unprecedented possibilities.
State of the art proposals for novel quantum sensors often rely on the creation
of large superpositions and generally detect a field. However, what is the
optimal superposition size for detecting an incident particle (or an incident
stream of particles) from a specific direction? This question is nontrivial as,
in general, this incident particle will scatter off with varied momenta,
imparting varied recoils to the sensor, resulting in decoherence rather than a
well defined measurable phase. By considering scattering interactions of
directional particulate environments with a system in a quantum superposition,
we find that there is an "optimal superposition" size for measuring incoming
particles via a relative phase. As a consequence of the anisotropy of the
environment, we observe a novel feature in the limiting behaviour of the real
and imaginary parts of the system's density matrix, linking the optimality of
the superposition size to the wavelength of the scatterer.
Related papers
- Coherent expansion of the motional state of a massive nanoparticle beyond its linear dimensions [0.0]
Quantum mechanics predicts that massive particles exhibit wave-like behavior.
We experimentally achieve an unprecedented degree of position diffusion in a massive levitated optomechanical system.
arXiv Detail & Related papers (2024-08-18T21:11:09Z) - Particle detectors in superposition in de Sitter spacetime [0.0]
Cosmological particle creation is the phenomenon by which the expansion of spacetime results in the production of particles of a given quantum field in that spacetime.
We study this phenomenon by considering a multi-level quantum particle detector in de Sitter spacetime coupled to a massless real quantum scalar field.
The main novel result is that, due to the quantum nature of the superposition of trajectories, the state of the detector after interaction with the field is not only a mixture of the thermal states that would be expected from each individual static trajectory but rather exhibits additional coherences due to interferences between the different trajectories.
arXiv Detail & Related papers (2024-03-04T14:45:33Z) - Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Reentrant phase behavior in systems with density-induced tunneling [0.0]
We study a quantum bosonic two-dimensional many body system with extended interactions between particles.
Analytical calculations show that the system can be driven out of its coherent state, which is prevalent among commonly used setups.
The breakdown of quantum coherence is inevitable, but can be misinterpreted if one assumes improper coupling between the constituents of the many particle system.
arXiv Detail & Related papers (2023-08-31T03:24:28Z) - Macroscopic Quantum Superpositions via Dynamics in a Wide Double-Well
Potential [0.0]
We present an experimental proposal for the rapid preparation of the center of mass of a levitated particle in a macroscopic quantum state.
This state is prepared by letting the particle evolve in a static double-well potential after a sudden switchoff of the harmonic trap.
We highlight the possibility of using two particles, one evolving in each potential well, to mitigate the impact of collective sources of noise and decoherence.
arXiv Detail & Related papers (2023-03-14T15:00:55Z) - Requirements on Quantum Superpositions of Macro-Objects for Sensing
Neutrinos [0.0]
We examine a macroscopic system in a quantum superposition of two spatially separated localized states as a detector for a stream of weakly interacting relativistic particles.
We do this using the explicit example of neutrinos with MeV-scale energy scattering from a solid object via neutral-current neutrino-nucleus scattering.
We find that a potentially measurable relative phase between quantum superposed components is obtained for a single gram scale mass placed in a superposition of spatial components separated by $10-14$m under sufficient cooling and background suppression.
arXiv Detail & Related papers (2022-04-27T17:45:48Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.