The application of artificial intelligence in software engineering: a
review challenging conventional wisdom
- URL: http://arxiv.org/abs/2108.01591v1
- Date: Tue, 3 Aug 2021 15:59:59 GMT
- Title: The application of artificial intelligence in software engineering: a
review challenging conventional wisdom
- Authors: Feras A. Batarseh, Rasika Mohod, Abhinav Kumar, Justin Bui
- Abstract summary: This survey chapter is a review of the most commonplace methods of AI applied to software engineering.
The review covers methods between years 1975-2017, for the requirements phase, 46 major AI-driven methods are found.
The purpose of this chapter is to answer the following questions: is there sufficient intelligence in the SE lifecycle?
- Score: 0.9651131604396904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of artificial intelligence (AI) is witnessing a recent upsurge in
research, tools development, and deployment of applications. Multiple software
companies are shifting their focus to developing intelligent systems; and many
others are deploying AI paradigms to their existing processes. In parallel, the
academic research community is injecting AI paradigms to provide solutions to
traditional engineering problems. Similarly, AI has evidently been proved
useful to software engineering (SE). When one observes the SE phases
(requirements, design, development, testing, release, and maintenance), it
becomes clear that multiple AI paradigms (such as neural networks, machine
learning, knowledge-based systems, natural language processing) could be
applied to improve the process and eliminate many of the major challenges that
the SE field has been facing. This survey chapter is a review of the most
commonplace methods of AI applied to SE. The review covers methods between
years 1975-2017, for the requirements phase, 46 major AI-driven methods are
found, 19 for design, 15 for development, 68 for testing, and 15 for release
and maintenance. Furthermore, the purpose of this chapter is threefold;
firstly, to answer the following questions: is there sufficient intelligence in
the SE lifecycle? What does applying AI to SE entail? Secondly, to measure,
formulize, and evaluate the overlap of SE phases and AI disciplines. Lastly,
this chapter aims to provide serious questions to challenging the current
conventional wisdom (i.e., status quo) of the state-of-the-art, craft a call
for action, and to redefine the path forward.
Related papers
- Visions of a Discipline: Analyzing Introductory AI Courses on YouTube [11.209406323898019]
We analyze the 20 most watched introductory AI courses on YouTube.
Introductory AI courses do not meaningfully engage with ethical or societal challenges of AI.
We recommend that introductory AI courses should highlight ethical challenges of AI to present a more balanced perspective.
arXiv Detail & Related papers (2024-05-31T01:48:42Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - AI in Software Engineering: A Survey on Project Management Applications [3.156791351998142]
Machine Learning (ML) employs algorithms that undergo training on data sets, enabling them to carry out specific tasks autonomously.
AI holds immense potential in the field of software engineering, particularly in project management and planning.
arXiv Detail & Related papers (2023-07-27T23:02:24Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Software Engineering for AI-Based Systems: A Survey [8.550158373713906]
There is limited synthesized knowledge on Software Engineering approaches for building, operating, and maintaining AI-based systems.
SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018.
The most studied properties of AI-based systems are dependability and safety.
arXiv Detail & Related papers (2021-05-05T11:22:08Z) - Time for AI (Ethics) Maturity Model Is Now [15.870654219935972]
This paper argues that AI software is still software and needs to be approached from the software development perspective.
We wish to discuss whether the focus should be on AI ethics or, more broadly, the quality of an AI system.
arXiv Detail & Related papers (2021-01-29T17:37:44Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Quality Management of Machine Learning Systems [0.0]
Artificial Intelligence (AI) has become a part of our daily lives due to major advances in Machine Learning (ML) techniques.
For business/mission-critical systems, serious concerns about reliability and maintainability of AI applications remain.
This paper presents a view of a holistic quality management framework for ML applications based on the current advances.
arXiv Detail & Related papers (2020-06-16T21:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.