論文の概要: AI Increases Global Access to Reliable Flood Forecasts
- arxiv url: http://arxiv.org/abs/2307.16104v1
- Date: Sun, 30 Jul 2023 01:49:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 17:48:23.267225
- Title: AI Increases Global Access to Reliable Flood Forecasts
- Title(参考訳): AIが信頼性の高いFlood Forecastへのグローバルアクセスを拡大
- Authors: Grey Nearing, Deborah Cohen, Vusumuzi Dube, Martin Gauch, Oren Gilon,
Shaun Harrigan, Avinatan Hassidim, Frederik Kratzert, Asher Metzger, Sella
Nevo, Florian Pappenberger, Christel Prudhomme, Guy Shalev, Shlomo Shenzis,
Tadele Tekalign, Dana Weitzner, Yoss Matias
- Abstract要約: 洪水は最もありふれた自然災害の一つである。
正確な時間的警告は洪水のリスクを軽減するために重要である。
我々は,最大7日間の異常な水文現象を予測できる人工知能モデルを開発した。
- 参考スコア(独自算出の注目度): 9.460635576808766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Floods are one of the most common and impactful natural disasters, with a
disproportionate impact in developing countries that often lack dense
streamflow monitoring networks. Accurate and timely warnings are critical for
mitigating flood risks, but accurate hydrological simulation models typically
must be calibrated to long data records in each watershed where they are
applied. We developed an Artificial Intelligence (AI) model to predict extreme
hydrological events at timescales up to 7 days in advance. This model
significantly outperforms current state of the art global hydrology models (the
Copernicus Emergency Management Service Global Flood Awareness System) across
all continents, lead times, and return periods. AI is especially effective at
forecasting in ungauged basins, which is important because only a few percent
of the world's watersheds have stream gauges, with a disproportionate number of
ungauged basins in developing countries that are especially vulnerable to the
human impacts of flooding. We produce forecasts of extreme events in South
America and Africa that achieve reliability approaching the current state of
the art in Europe and North America, and we achieve reliability at between 4
and 6-day lead times that are similar to current state of the art nowcasts
(0-day lead time). Additionally, we achieve accuracies over 10-year return
period events that are similar to current accuracies over 2-year return period
events, meaning that AI can provide warnings earlier and over larger and more
impactful events. The model that we develop in this paper has been incorporated
into an operational early warning system that produces publicly available (free
and open) forecasts in real time in over 80 countries. This work using AI and
open data highlights a need for increasing the availability of hydrological
data to continue to improve global access to reliable flood warnings.
- Abstract(参考訳): 洪水は最もありふれた自然災害の1つであり、しばしば密集した流れの監視網を欠く発展途上国に不釣り合いな影響をもたらす。
洪水のリスクを軽減するには正確な警告とタイムリーな警告が不可欠であるが、正確な水理シミュレーションモデルは通常、適用された各流域の長いデータ記録に校正する必要がある。
我々は人工知能(AI)モデルを開発し,最大7日間の時間スケールで極端な水文現象を予測した。
このモデルは、すべての大陸、リードタイム、リターン期間にわたって、最先端のグローバル水文学モデル(Copernicus Emergency Management Service Global Flood Awareness System)を著しく上回っている。
世界の流域のわずか数パーセントが流水量計を備えており、特に人為的な洪水の影響に弱い発展途上国では不均等な数の未採水池があるため、AIは特に未採水池の予測に有効である。
我々は,南アメリカとアフリカにおける極端な事象の予報を作成し,ヨーロッパと北アメリカの現在の芸術水準に迫る信頼性を実現し,現在のアート・ノウキャスト(0日間リードタイム)に類似した4日から6日間のリードタイムで信頼性を達成する。
さらに、私たちは2年間のリターン期間イベントに対して、現在のアキュラシーに似た10年間のリターン期間イベントに対して、アキュラシーを達成しています。
本稿では,80か国以上で公開されている(自由かつオープンな)予測をリアルタイムに生成する,運用早期警告システムに組み込んだモデルを提案する。
このAIとオープンデータを使った作業は、信頼できる洪水警報へのグローバルアクセスを改善し続けるために、水文データの可用性を高める必要性を強調している。
関連論文リスト
- Global spatio-temporal downscaling of ERA5 precipitation through generative AI [3.320484236699228]
本研究では,地球規模での降水量の時間的ダウンスケーリングを初めて行う深層学習システムSpateGAN-ERA5について紹介する。
SpateGAN-ERA5は条件付き生成対向神経ネットワーク(cGAN)を使用し、ERA5の降水量は24kmから1時間から2kmと10分に増大する。
現実的で大局的なパターンと極端を含む正確な降雨量分布を持つ高解像度の降雨場を提供する。
論文 参考訳(メタデータ) (2024-11-22T14:11:23Z) - Mapping Global Floods with 10 Years of Satellite Radar Data [0.0]
本研究では,Sentinel-1 Synthetic Aperture Radar (SAR)衛星画像の雲透過性を利用した新しい深層学習洪水検出モデルを提案する。
我々は、クラウドカバレッジの影響を受けない予測を備えた、ユニークな、縦断的なグローバルな洪水範囲データセットを作成します。
我々は,エチオピアの歴史的洪水発生地域を特定し,2024年5月のケニアの洪水時のリアルタイム災害対応能力を示す。
論文 参考訳(メタデータ) (2024-11-03T02:44:32Z) - Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting [7.4807361562214405]
洪水は最も一般的で破壊的な自然災害の一つである。
近年の気象予知と宇宙からの洪水のマッピングは、極端な出来事を予想できる可能性を示した。
洪水範囲の直接予測を可能にするデータセットとベンチマークが欠如している。
論文 参考訳(メタデータ) (2024-09-27T09:51:25Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Flood Prediction Using Machine Learning Models [0.0]
本稿では,異なる機械学習モデルを用いて洪水の予測を行うことにより,この自然災害の極端なリスクを低減することを目的とする。
その結果、どのモデルがより正確な結果をもたらすかを理解するために比較分析を行う。
論文 参考訳(メタデータ) (2022-08-02T03:59:43Z) - ML-based Flood Forecasting: Advances in Scale, Accuracy and Reach [17.839074983736467]
洪水は世界で最もありふれた自然災害の一つである。
しかし、世界の脆弱な人口の大多数は、信頼性が高く行動可能な警告システムにアクセスできない。
本稿では,過去1年間に開発された洪水予報システムの2つの構成要素について述べる。
論文 参考訳(メタデータ) (2020-11-29T19:34:00Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。