Optimizing Variational Circuits for Higher-Order Binary Optimization
- URL: http://arxiv.org/abs/2307.16756v1
- Date: Mon, 31 Jul 2023 15:27:06 GMT
- Title: Optimizing Variational Circuits for Higher-Order Binary Optimization
- Authors: Zo\'e Verch\`ere and Sourour Elloumi and Andrea Simonetto
- Abstract summary: We propose new approaches to encode their Hamiltonian into a ready-to-implement circuit involving only two-qubit gates.
We evaluate our approaches by comparing them with the state of the art, showcasing clear gains in terms of circuit depth.
- Score: 2.578242050187029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms have been advocated as promising candidates to
solve combinatorial optimization problems on near-term quantum computers. Their
methodology involves transforming the optimization problem into a quadratic
unconstrained binary optimization (QUBO) problem. While this transformation
offers flexibility and a ready-to-implement circuit involving only two-qubit
gates, it has been shown to be less than optimal in the number of employed
qubits and circuit depth, especially for polynomial optimization. On the other
hand, strategies based on higher-order binary optimization (HOBO) could save
qubits, but they would introduce additional circuit layers, given the presence
of higher-than-two-qubit gates.
In this paper, we study HOBO problems and propose new approaches to encode
their Hamiltonian into a ready-to-implement circuit involving only two-qubit
gates. Our methodology relies on formulating the circuit design as a
combinatorial optimization problem, in which we seek to minimize circuit depth.
We also propose handy simplifications and heuristics that can solve the circuit
design problem in polynomial time. We evaluate our approaches by comparing them
with the state of the art, showcasing clear gains in terms of circuit depth.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Improving Quantum and Classical Decomposition Methods for Vehicle Routing [2.4646794072984477]
We propose an elaborate combination of two decomposition methods, namely graph shrinking and circuit cutting.
Our results offer insights into the performance of algorithms for optimization problems within the constraints of current quantum technology.
arXiv Detail & Related papers (2024-04-08T14:19:25Z) - Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training [0.0]
Variational quantum algorithms are viewed as promising candidates for demonstrating quantum advantage on near-term devices.
This work introduces a novel optimization method designed to alleviate the adverse effects of barren plateau (BP) problems during circuit training.
We have successfully applied our optimization strategy to quantum circuits comprising $16$ qubits and $15000$ entangling gates.
arXiv Detail & Related papers (2024-02-07T20:06:29Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
We present for the first time how to use graph neural network (GNN) autoencoders for the optimisation of quantum circuits.
We construct directed acyclic graphs from the quantum circuits, encode the graphs and use the encodings to represent RL states.
Our method is the first realistic first step towards very large scale RL quantum circuit optimisation.
arXiv Detail & Related papers (2023-03-06T16:51:30Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - A Structured Method for Compilation of QAOA Circuits in Quantum
Computing [5.560410979877026]
The flexibility in reordering the two-qubit gates allows compiler optimizations to generate circuits with better depths, gate count, and fidelity.
We propose a structured method that ensures linear depth for any compiled QAOA circuit on multi-dimensional quantum architectures.
Overall, we can compile a circuit with up to 1024 qubits in 10 seconds with a 3.8X speedup in depth, 17% reduction in gate count, and 18X improvement for circuit ESP.
arXiv Detail & Related papers (2021-12-12T04:00:45Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
We introduce a simple yet efficient algorithm named Quantum Qubit Rotation Algorithm (QQRA)
The approximate solution of the max-cut problem can be obtained with probability close to 1.
We compare it with the well known quantum approximate optimization algorithm and the classical Goemans-Williamson algorithm.
arXiv Detail & Related papers (2021-10-15T11:19:48Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.