Quantum Circuit Construction and Optimization through Hybrid Evolutionary Algorithms
- URL: http://arxiv.org/abs/2504.17561v1
- Date: Thu, 24 Apr 2025 13:54:22 GMT
- Title: Quantum Circuit Construction and Optimization through Hybrid Evolutionary Algorithms
- Authors: Leo Sünkel, Philipp Altmann, Michael Kölle, Gerhard Stenzel, Thomas Gabor, Claudia Linnhoff-Popien,
- Abstract summary: We apply a hybrid evolutionary algorithm to minimize the depth of circuits in quantum computing.<n>We run experiments on random circuits with 4 and 6 qubits varying in circuit depth.<n>Our results show that the proposed methods are able to significantly reduce the depth of circuits while still retaining a high fidelity to the target state.
- Score: 6.869330209162395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply a hybrid evolutionary algorithm to minimize the depth of circuits in quantum computing. More specifically, we evaluate two different variants of the algorithm. In the first approach, we combine the evolutionary algorithm with an optimization subroutine to optimize the parameters of the rotation gates present in the quantum circuit. In the second, the algorithm solely relies on evolutionary operations (i.e., mutations and crossover). We approach the problem from two sides: (1) constructing circuits from the ground up by starting with random initializations and (2) initializing individuals with a target circuit in order to optimize it further according to the fitness function. We run experiments on random circuits with 4 and 6 qubits varying in circuit depth. Our results show that the proposed methods are able to significantly reduce the depth of circuits while still retaining a high fidelity to the target state.
Related papers
- Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.<n>This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - Strategies for optimizing double-bracket quantum algorithms [0.050257374758179374]
We present strategies to optimize the choice of the double-bracket evolutions.
We also present a selection of diagonal evolution parametrizations that can be directly compiled into CNOTs and single-qubit rotation gates.
arXiv Detail & Related papers (2024-08-14T10:07:54Z) - Optimizing Variational Circuits for Higher-Order Binary Optimization [2.578242050187029]
We propose new approaches to encode their Hamiltonian into a ready-to-implement circuit involving only two-qubit gates.
We evaluate our approaches by comparing them with the state of the art, showcasing clear gains in terms of circuit depth.
arXiv Detail & Related papers (2023-07-31T15:27:06Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
We present for the first time how to use graph neural network (GNN) autoencoders for the optimisation of quantum circuits.
We construct directed acyclic graphs from the quantum circuits, encode the graphs and use the encodings to represent RL states.
Our method is the first realistic first step towards very large scale RL quantum circuit optimisation.
arXiv Detail & Related papers (2023-03-06T16:51:30Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS)
Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians.
For simulation problems on 100 qubits, we show that AQCtensor achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit.
arXiv Detail & Related papers (2023-01-20T14:40:29Z) - Riemannian quantum circuit optimization for Hamiltonian simulation [2.1227079314039057]
Hamiltonian simulation is a natural application of quantum computing.
For translation invariant systems, the gates in such circuit topologies can be further optimized on classical computers.
For the Ising and Heisenberg models on a one-dimensional lattice, we achieve orders of magnitude accuracy improvements.
arXiv Detail & Related papers (2022-12-15T00:00:17Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
We propose a quantum algorithm based on ridge regression model, which get the optimal fitting parameters.
The proposed algorithm has a wide range of application and the proposed algorithm can be used as a subroutine of other quantum algorithms.
arXiv Detail & Related papers (2021-04-27T11:03:52Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.