Robust estimation of the Quantum Fisher Information on a quantum processor
- URL: http://arxiv.org/abs/2307.16882v2
- Date: Wed, 10 Jul 2024 11:43:32 GMT
- Title: Robust estimation of the Quantum Fisher Information on a quantum processor
- Authors: Vittorio Vitale, Aniket Rath, Petar Jurcevic, Andreas Elben, Cyril Branciard, BenoƮt Vermersch,
- Abstract summary: We present the experimental measurement of a series of lower bounds that converge to the quantum Fisher information (QFI)
We estimate the QFI for Greenberg-Horne-Zeilinger states, observing genuine multipartite entanglement.
We investigate the interplay between state optimization and noise induced by increasing the circuit depth.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the experimental measurement, on a quantum processor, of a series of polynomial lower bounds that converge to the quantum Fisher information (QFI), a fundamental quantity for certifying multipartite entanglement that is useful for metrological applications. We combine advanced methods of the randomized measurement toolbox to obtain estimators that are robust against drifting errors caused uniquely during the randomized measurement protocol. We estimate the QFI for Greenberg-Horne-Zeilinger states, observing genuine multipartite entanglement. Then, we prepare the ground state of the transverse field Ising model at the critical point using a variational circuit. We estimate its QFI and investigate the interplay between state optimization and noise induced by increasing the circuit depth.
Related papers
- Quantum metrological capability as a probe for quantum phase transition [1.5574423250822542]
The metrological capability quantified by the quantum Fisher information captivatingly shows an unique peak in the vicinity of the quantum critical point.
We show that the probing can be implemented by extracting quantum fluctuations of the interferometric generator.
arXiv Detail & Related papers (2024-08-19T08:18:03Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Quantum Fisher information from randomized measurements [0.0]
The quantum Fisher information (QFI) is a fundamental quantity of interest in many areas.
We use measurements of the density matrix to construct lower bounds that converge to the QFI.
We present two examples of applications of the method in quantum systems made of coupled qubits and collective spins.
arXiv Detail & Related papers (2021-05-27T14:16:14Z) - Experimental estimation of the quantum Fisher information from
randomized measurements [9.795131832414855]
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics.
Here, we explore how the QFI can be estimated via randomized measurements.
We experimentally validate this approach using two platforms: a nitrogen-vacancy center spin in diamond and a 4-qubit state provided by a superconducting quantum computer.
arXiv Detail & Related papers (2021-04-01T15:12:31Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Variational Quantum Algorithm for Estimating the Quantum Fisher
Information [0.0]
We present a variational quantum algorithm called Variational Quantum Fisher Information Estimation (VQFIE)
By estimating lower and upper bounds on the QFI, based on bounding the fidelity, VQFIE outputs a range in which the actual QFI lies.
This result can then be used to variationally prepare the state that maximizes the QFI, for the application of quantum sensing.
arXiv Detail & Related papers (2020-10-20T17:44:55Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Quantum Fisher information measurement and verification of the quantum
Cram\'er-Rao bound in a solid-state qubit [11.87072483257275]
We experimentally demonstrate near saturation of the quantum Cram'er-Rao bound in the phase estimation of a solid-state spin system.
This is achieved by comparing the experimental uncertainty in phase estimation with an independent measurement of the related quantum Fisher information.
arXiv Detail & Related papers (2020-03-18T17:51:06Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.