Quantum metrological capability as a probe for quantum phase transition
- URL: http://arxiv.org/abs/2408.09783v3
- Date: Fri, 23 Aug 2024 08:59:11 GMT
- Title: Quantum metrological capability as a probe for quantum phase transition
- Authors: Xiangbei Li, Yaoming Chu, Shaoliang Zhang, Jianming Cai,
- Abstract summary: The metrological capability quantified by the quantum Fisher information captivatingly shows an unique peak in the vicinity of the quantum critical point.
We show that the probing can be implemented by extracting quantum fluctuations of the interferometric generator.
- Score: 1.5574423250822542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The comprehension of quantum phase transitions (QPTs) is considered as a critical foothold in the field of many-body physics. Developing protocols to effectively identify and understand QPTs thus represents a key but challenging task for present quantum simulation experiments. Here, we establish a dynamical quench-interferometric framework to probe a zero-temperature QPT, which utilizes the evolved state by quenching the QPT Hamiltonian as input of a unitary interferometer. The metrological capability quantified by the quantum Fisher information captivatingly shows an unique peak in the vicinity of the quantum critical point, allowing us to probe the QPT without cooling the system to its ground state. We show that the probing can be implemented by extracting quantum fluctuations of the interferometric generator as well as parameter estimation uncertainty of the interferometric phase, and subsequently allows identifying the boundary of the phase diagram. Our results establish an important link between QPTs and quantum metrology, and enrich the toolbox of studying non-equilibrium many-body physics in current quantum simulators.
Related papers
- Quantum sensing in Kerr parametric oscillators [0.0]
Changes in the ground state at a QPT enhance indicators of parameter estimation.
In systems that lack a QPT, quantum sensitivity can still be enhanced due to excited-state quantum phase transitions.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum Computation of Phase Transition in Interacting Scalar Quantum
Field Theory [0.0]
It has been demonstrated that the critical point of the phase transition in scalar quantum field theory can be approximated via a Gaussian Effective Potential (GEP)
We perform quantum computations with various lattice sizes and obtain evidence of a transition from a symmetric to a symmetry-broken phase.
We implement the ten-site case on IBM quantum hardware using the Variational Quantum Eigensolver (VQE) algorithm to minimize the GEP.
arXiv Detail & Related papers (2023-03-04T14:11:37Z) - Variational quantum simulation of the quantum critical regime [0.0]
We propose a variational approach, which minimizes the variational free energy, to simulate and locate the quantum critical regime on a quantum computer.
Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
arXiv Detail & Related papers (2023-02-15T02:59:41Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Critical parametric quantum sensing [0.0]
We assess the metrological power of parametric Kerr resonators undergoing driven-dissipative transitions.
We show that the Heisenberg precision can be achieved with experimentally reachable parameters.
arXiv Detail & Related papers (2021-07-09T15:44:26Z) - Experimental estimation of the quantum Fisher information from
randomized measurements [9.795131832414855]
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics.
Here, we explore how the QFI can be estimated via randomized measurements.
We experimentally validate this approach using two platforms: a nitrogen-vacancy center spin in diamond and a 4-qubit state provided by a superconducting quantum computer.
arXiv Detail & Related papers (2021-04-01T15:12:31Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.