論文の概要: Deep Reinforcement Learning-Based Battery Conditioning Hierarchical V2G
Coordination for Multi-Stakeholder Benefits
- arxiv url: http://arxiv.org/abs/2308.00218v1
- Date: Tue, 1 Aug 2023 01:19:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 15:51:48.033017
- Title: Deep Reinforcement Learning-Based Battery Conditioning Hierarchical V2G
Coordination for Multi-Stakeholder Benefits
- Title(参考訳): 階層型V2Gコーディネートを用いた深層強化学習型電池システム
- Authors: Yubao Zhang, Xin Chen, Yi Gu, Zhicheng Li and Wu Kai
- Abstract要約: 本研究では, 深部強化学習(DRL)とProof of Stakeアルゴリズムに基づく多階層型階層型V2Gコーディネートを提案する。
マルチステークホルダには、電力グリッド、EVアグリゲータ(EVA)、ユーザが含まれており、提案した戦略はマルチステークホルダーのメリットを達成することができる。
- 参考スコア(独自算出の注目度): 3.4529246211079645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing prevalence of electric vehicles (EVs) and advancements in EV
electronics, vehicle-to-grid (V2G) techniques and large-scale scheduling
strategies have emerged to promote renewable energy utilization and power grid
stability. This study proposes a multi-stakeholder hierarchical V2G
coordination based on deep reinforcement learning (DRL) and the Proof of Stake
algorithm. Furthermore, the multi-stakeholders include the power grid, EV
aggregators (EVAs), and users, and the proposed strategy can achieve
multi-stakeholder benefits. On the grid side, load fluctuations and renewable
energy consumption are considered, while on the EVA side, energy constraints
and charging costs are considered. The three critical battery conditioning
parameters of battery SOX are considered on the user side, including state of
charge, state of power, and state of health. Compared with four typical
baselines, the multi-stakeholder hierarchical coordination strategy can enhance
renewable energy consumption, mitigate load fluctuations, meet the energy
demands of EVA, and reduce charging costs and battery degradation under
realistic operating conditions.
- Abstract(参考訳): 電気自動車(EV)の普及とEVエレクトロニクスの進歩に伴い、再生可能エネルギー利用と電力グリッド安定性を促進するために、V2G技術と大規模スケジューリング戦略が出現している。
本研究では, 深部強化学習(DRL)とProof of Stakeアルゴリズムに基づく多階層型階層型V2Gコーディネートを提案する。
さらに、マルチステークホルダには、電力グリッド、EVアグリゲータ(EVA)、ユーザが含まれており、提案した戦略はマルチステークホルダーのメリットを得ることができる。
グリッド側では負荷変動と再生可能エネルギー消費が考慮され、EVA側ではエネルギー制約と充電コストが考慮される。
電池SOXの3つの重要なバッテリコンディショニングパラメータは、充電状態、電力状態、健康状態を含むユーザ側で考慮される。
4つの典型的なベースラインと比較して、マルチステイクホルダ階層の協調戦略は、再生可能エネルギー消費量を増大させ、負荷変動を緩和し、evaのエネルギー需要を満たし、現実的な運用条件下での充電コストとバッテリーの劣化を低減することができる。
関連論文リスト
- EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
本稿では,MARL(Multi-Agent Reinforcement Learning)エネルギー管理フレームワークであるEnergAIzeを紹介する。
ユーザ中心の多目的エネルギー管理を可能にし、各プローサが様々な個人管理目標から選択できるようにする。
EnergAIzeの有効性は、CityLearnシミュレーションフレームワークを用いたケーススタディにより評価された。
論文 参考訳(メタデータ) (2024-04-02T23:16:17Z) - Electric Vehicles coordination for grid balancing using multi-objective
Harris Hawks Optimization [0.0]
再生可能エネルギーの台頭は、地域グリッドのエネルギー収支に技術的および運用上の課題をもたらす電気自動車(EV)へのシフトと一致している。
複数のEVからグリッドへの電力フローの調整には、高度なアルゴリズムとロードバランシング戦略が必要である。
本稿では,安定した電力供給と安定したローカルグリッドの維持を目標として,一日のEVフリート調整モデルを提案する。
論文 参考訳(メタデータ) (2023-11-24T15:50:37Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
マルチエージェント深部強化学習(MADRL)はEV充電制御において有効であることが証明されている。
既存のMADRLベースのアプローチでは、配電ネットワークにおけるEV充電/放電の自然な電力フローを考慮できない。
本稿では,マルチEV充電/放電と最適電力流で動作する放射分布ネットワーク(RDN)を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T05:34:46Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Transfer Deep Reinforcement Learning-based Large-scale V2G Continuous
Charging Coordination with Renewable Energy Sources [5.99526159525785]
再生可能エネルギーと電力グリッドの安定性を高めるため,V2G技術と大規模スケジューリングアルゴリズムを開発した。
本稿では, 連続充電/放電協調戦略のための深部強化学習法を提案する。
論文 参考訳(メタデータ) (2022-10-13T13:21:55Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。