論文の概要: Decomposition Ascribed Synergistic Learning for Unified Image
Restoration
- arxiv url: http://arxiv.org/abs/2308.00759v2
- Date: Tue, 12 Mar 2024 12:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 01:52:05.571862
- Title: Decomposition Ascribed Synergistic Learning for Unified Image
Restoration
- Title(参考訳): 統合画像復元のための分解型相乗学習
- Authors: Jinghao Zhang, Feng Zhao
- Abstract要約: 特異値分解のレンズによる多彩な劣化に着目した。
劣化した特異ベクトルと特異値の専用最適化は、本質的に様々な復元タスク間のポテンシャル関係を利用する。
- 参考スコア(独自算出の注目度): 8.866457286621342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to restore multiple image degradations within a single model is
quite beneficial for real-world applications. Nevertheless, existing works
typically concentrate on regarding each degradation independently, while their
relationship has been less exploited to ensure the synergistic learning. To
this end, we revisit the diverse degradations through the lens of singular
value decomposition, with the observation that the decomposed singular vectors
and singular values naturally undertake the different types of degradation
information, dividing various restoration tasks into two groups, \ie, singular
vector dominated and singular value dominated. The above analysis renders a
more unified perspective to ascribe the diverse degradations, compared to
previous task-level independent learning. The dedicated optimization of
degraded singular vectors and singular values inherently utilizes the potential
relationship among diverse restoration tasks, attributing to the Decomposition
Ascribed Synergistic Learning (DASL). Specifically, DASL comprises two
effective operators, namely, Singular VEctor Operator (SVEO) and Singular VAlue
Operator (SVAO), to favor the decomposed optimization, which can be lightly
integrated into existing image restoration backbone. Moreover, the congruous
decomposition loss has been devised for auxiliary. Extensive experiments on
blended five image restoration tasks demonstrate the effectiveness of our
method.
- Abstract(参考訳): 単一のモデル内で複数の画像劣化を復元する学習は、現実世界のアプリケーションにとって非常に有益である。
しかしながら、既存の研究は通常、個々の分解に独立して集中するが、それらの関係は相乗的学習を保証するためにあまり利用されていない。
この目的のために,分解された特異ベクトルと特異値が,自然に異なる分解情報のタイプを受け取り,様々な復元タスクを2つのグループ,\ie,特異ベクトル支配,特異値支配に分割する観察を行い,特異値分解のレンズを通して多様な分解を再考する。
上記の分析は、以前のタスクレベルの独立した学習と比較して、さまざまな劣化を補うための、より統一的な視点を示している。
劣化した特異ベクトルと特異値の専用最適化は、様々な復元タスク間の潜在的な関係を本質的に利用しており、これはDASL(Decomposition Ascribed Synergistic Learning)に起因する。
具体的には、daslはsveo(single vector operator)とsvao(single value operator)の2つの効果的な演算子で構成されており、既存の画像復元バックボーンに軽量に統合できる分解最適化を好む。
さらに, 連続的な分解損失を補助として考案した。
ブレンドした5つの画像復元タスクの大規模な実験により,本手法の有効性が示された。
関連論文リスト
- Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
これは、モデルを一連の劣化ベースでトレーニングし、これらのベースがゼロショットで構成できる可能性のある劣化を除去する、新しいタスク設定である。
段階的に問題に対処するLLMに着想を得たCoR(Chain-of-Thought)を提案する。
CoRは、未知の複合劣化を段階的に除去するようモデルに指示する。
論文 参考訳(メタデータ) (2024-10-11T10:21:42Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
既存の統合手法は、マルチタスク学習問題として、多重劣化画像復元を扱う。
本稿では,複数のローランクアダプタ(LoRA)をベースとした汎用画像復元フレームワークを提案する。
本フレームワークは, 学習前の生成モデルを多段劣化復元のための共有コンポーネントとして利用し, 特定の劣化画像復元タスクに転送する。
論文 参考訳(メタデータ) (2024-09-30T11:16:56Z) - Perceive-IR: Learning to Perceive Degradation Better for All-in-One Image Restoration [33.163161549726446]
Perceive-IRは、微細な画質制御を実現するために設計されたオールインワン画像復元装置である。
素早い学習の段階では、素早い学習を活用し、3段階の品質レベルを識別できるきめ細かい品質知覚器を得る。
修復段階では,修復プロセスをさらに促進するために,意味的誘導モジュールとコンパクトな特徴抽出を提案する。
論文 参考訳(メタデータ) (2024-08-28T17:58:54Z) - Efficient Degradation-aware Any Image Restoration [83.92870105933679]
我々は,低ランク体制下での学習者(DaLe)を用いた効率的なオールインワン画像復元システムである textitDaAIR を提案する。
モデルキャパシティを入力劣化に動的に割り当てることにより、総合学習と特定の学習を統合した効率的な復調器を実現する。
論文 参考訳(メタデータ) (2024-05-24T11:53:27Z) - Multi-task Image Restoration Guided By Robust DINO Features [88.74005987908443]
DINOv2から抽出したロバストな特徴を利用したマルチタスク画像復元手法であるmboxtextbfDINO-IRを提案する。
まず,DINOV2の浅い特徴を動的に融合するPSF (Pixel-semantic fusion) モジュールを提案する。
これらのモジュールを統一された深層モデルに定式化することにより、モデルトレーニングを制約するために、DINO知覚の対照的な損失を提案する。
論文 参考訳(メタデータ) (2023-12-04T06:59:55Z) - Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL [16.792949555151978]
再構成や対照的な損失を用いた自己教師型表現の学習は、画像ベース・マルチモーダル強化学習(RL)の性能とサンプルの複雑さを向上させる
ここでは、異なる自己教師付き損失関数は、基礎となるセンサのモジュラリティの情報密度によって異なる利点と制限を有する。
コントラスト的再構成集約表現学習(CoRAL)を提案する。このフレームワークは,各センサのモダリティに対して,最も適切な自己管理的損失を選択することができる。
論文 参考訳(メタデータ) (2023-02-10T15:57:20Z) - Relationship Quantification of Image Degradations [72.98190570967937]
劣化関係指数(DRI)は,2モデル間の検証損失の平均ドロップレート差として定義される。
DRIは常に、特定の劣化を列車モデルの補助として利用することで、性能改善を予測します。
得られた劣化組合せがアンカー劣化性能を向上させることができるかどうかを簡易かつ効果的に推定する手法を提案する。
論文 参考訳(メタデータ) (2022-12-08T09:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。