Physics-informed neural networks for blood flow inverse problems
- URL: http://arxiv.org/abs/2308.00927v1
- Date: Wed, 2 Aug 2023 04:04:49 GMT
- Title: Physics-informed neural networks for blood flow inverse problems
- Authors: Jeremias Garay, Jocelyn Dunstan, Sergio Uribe, Francisco Sahli
Costabal
- Abstract summary: Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving inverse problems.
In this work, we use the PINNs methodology for estimating reduced-order model parameters and the full velocity field from scatter 2D noisy measurements in the ascending aorta.
- Score: 2.5543665891116163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) have emerged as a powerful tool for
solving inverse problems, especially in cases where no complete information
about the system is known and scatter measurements are available. This is
especially useful in hemodynamics since the boundary information is often
difficult to model, and high-quality blood flow measurements are generally hard
to obtain. In this work, we use the PINNs methodology for estimating
reduced-order model parameters and the full velocity field from scatter 2D
noisy measurements in the ascending aorta. The results show stable and accurate
parameter estimations when using the method with simulated data, while the
velocity reconstruction shows dependence on the measurement quality and the
flow pattern complexity. The method allows for solving clinical-relevant
inverse problems in hemodynamics and complex coupled physical systems.
Related papers
- Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - Learning rheological parameters of non-Newtonian fluids from velocimetry data [46.2482873419289]
We devise an algorithm that learns the most likely Carreau parameters of a shear-thinning fluid.
We show that the algorithm can successfully reconstruct the flow field by learning the most likely Carreau parameters.
arXiv Detail & Related papers (2024-08-05T16:27:38Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
Quantitative Magnetic Resonance Imaging (qMRI) enables the reproducible measurement of biophysical parameters in tissue.
The challenge lies in solving a nonlinear, ill-posed inverse problem to obtain desired tissue parameter maps from acquired raw data.
We propose PINQI, a novel qMRI reconstruction method that integrates the knowledge about the signal, acquisition model, and learned regularization into a single end-to-end trainable neural network.
arXiv Detail & Related papers (2023-06-19T15:37:53Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics-informed deep-learning applications to experimental fluid
mechanics [2.992602379681373]
High-resolution reconstruction of flow-field data from low-resolution and noisy measurements is of interest in experimental fluid mechanics.
Deep-learning approaches have been shown suitable for such super-resolution tasks.
In this study, we apply physics-informed neural networks (PINNs) for super-resolution of flow-field data in time and space.
arXiv Detail & Related papers (2022-03-29T09:58:30Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification.
PINNs can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws.
arXiv Detail & Related papers (2020-11-25T16:02:52Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.