論文の概要: Simulation-based inference using surjective sequential neural likelihood
estimation
- arxiv url: http://arxiv.org/abs/2308.01054v1
- Date: Wed, 2 Aug 2023 10:02:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-08-03 13:20:11.896956
- Title: Simulation-based inference using surjective sequential neural likelihood
estimation
- Title(参考訳): 逐次的ニューラルネットワーク推定を用いたシミュレーションベース推論
- Authors: Simon Dirmeier, Carlo Albert, Fernando Perez-Cruz
- Abstract要約: 主観的逐次的ニューラルネットワーク類似度推定はシミュレーションに基づく推論の新しい手法である。
データを低次元空間に埋め込むことで、SSNLは高次元データセットに適用する際の従来の可能性ベースの手法が抱えるいくつかの問題を解く。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Surjective Sequential Neural Likelihood (SSNL) estimation, a novel
method for simulation-based inference in models where the evaluation of the
likelihood function is not tractable and only a simulator that can generate
synthetic data is available. SSNL fits a dimensionality-reducing surjective
normalizing flow model and uses it as a surrogate likelihood function which
allows for conventional Bayesian inference using either Markov chain Monte
Carlo methods or variational inference. By embedding the data in a
low-dimensional space, SSNL solves several issues previous likelihood-based
methods had when applied to high-dimensional data sets that, for instance,
contain non-informative data dimensions or lie along a lower-dimensional
manifold. We evaluate SSNL on a wide variety of experiments and show that it
generally outperforms contemporary methods used in simulation-based inference,
for instance, on a challenging real-world example from astrophysics which
models the magnetic field strength of the sun using a solar dynamo model.
- Abstract(参考訳): 本稿では,確率関数の抽出が不可能なモデルにおけるシミュレーションに基づく推論手法であるSurjective Sequential Neural Likelihood (SSNL) の推定について述べる。
SSNL は次元還元型全単射正規化フローモデルに適合し、マルコフ連鎖モンテカルロ法または変分推論を用いて従来のベイズ推定を可能にする代理可能性関数として用いる。
低次元空間にデータを埋め込むことで、ssnlは、例えば、非インフォーマティブなデータ次元を含む高次元データセットに適用される場合や、低次元多様体に沿って横たわる場合、以前の可能性ベース手法が抱えるいくつかの問題を解決する。
例えば、太陽ダイナモモデルを用いて太陽の磁場強度をモデル化する天体物理学からの挑戦的な実世界の例において、シミュレーションベースの推論で用いられる同時代の手法よりも一般的に優れていることを示す。
関連論文リスト
- Preconditioned Neural Posterior Estimation for Likelihood-free Inference [5.651060979874024]
本稿では,低次元問題においても,神経後部推定法(NPE)の精度は高くないことを示す。
我々は,ABCの短い動作でパラメータ空間の領域を効果的に排除し,シミュレーションとデータ間の大きな相違を生じさせる,プレコンディション付きNPEとそのシーケンシャルバージョン(PSNPE)を提案する。
本稿では, ニューラルネットワークと統計的SBI法を融合させることにより, 様々な事例において性能が向上することを示す。
論文 参考訳(メタデータ) (2024-04-21T07:05:38Z) - All-in-one simulation-based inference [19.41881319338419]
我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Pseudo-Likelihood Inference [16.934708242852558]
Pseudo-Likelihood Inference (PLI)は、ABCに神経近似をもたらす新しい方法であり、ベイズシステムの識別に挑戦するタスクと競合する。
PLIは、勾配降下による神経後葉の最適化を可能にし、要約統計に頼らず、入力として複数の観察を可能にする。
PLIの有効性は、4つの古典的SBIベンチマークタスクと非常にダイナミックな物理システムで評価される。
論文 参考訳(メタデータ) (2023-11-28T10:17:52Z) - Misspecification-robust Sequential Neural Likelihood for
Simulation-based Inference [0.20971479389679337]
本稿では,追加の調整パラメータを組み込んだSNL法を提案する。
いくつかの例を通して,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-01-31T02:28:18Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
シミュレーションベース推論のための2つの合成確率法を提案する。
本研究では,シミュレータによって生成された合成データを用いて,条件付きエネルギーベースモデル(EBM)を学習する。
本研究は, カニの神経科学ネットワークのモデルに適用し, 各種合成データセット上での両手法の特性を実証する。
論文 参考訳(メタデータ) (2022-10-26T14:38:24Z) - Efficient identification of informative features in simulation-based
inference [5.538076164981993]
訓練後, 後部を推測し, 特徴の寄与度を評価する前に, 訓練後のサロゲート確率を極端に評価できることが示唆された。
本稿では,HHニューロンモデルのパラメータを推定する上で最も重要な特徴を同定し,本手法の有用性を示す。
論文 参考訳(メタデータ) (2022-10-21T12:35:46Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference [0.0]
シミュレーションに基づく推論で生じるモデル誤特定のタイプを概念化し、これらの誤特定の下でベイズフローフレームワークの性能を体系的に検討する。
本稿では、潜在データ空間に確率的構造を課し、最大平均不一致(MMD)を利用して破滅的な誤特定を検知する拡張最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T13:25:27Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
本研究では,シンクホーンの発散による確率空間上の最も急降下法として機能するシンクホーン自然勾配(SiNG)アルゴリズムを提案する。
本稿では,SiNG の主要成分であるシンクホーン情報行列 (SIM) が明示的な表現を持ち,対数的スケールの複雑さを正確に評価できることを示す。
本実験では,SiNGと最先端のSGD型解法を定量的に比較し,その有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-11-09T02:51:17Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。