論文の概要: Misspecification-robust Sequential Neural Likelihood for
Simulation-based Inference
- arxiv url: http://arxiv.org/abs/2301.13368v2
- Date: Thu, 7 Mar 2024 11:31:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 18:38:32.121753
- Title: Misspecification-robust Sequential Neural Likelihood for
Simulation-based Inference
- Title(参考訳): シミュレーションに基づく推論のための不特定化・ロバスト逐次的確率
- Authors: Ryan P. Kelly and David J. Nott and David T. Frazier and David J.
Warne and Chris Drovandi
- Abstract要約: 本稿では,追加の調整パラメータを組み込んだSNL法を提案する。
いくつかの例を通して,本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 0.20971479389679337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation-based inference techniques are indispensable for parameter
estimation of mechanistic and simulable models with intractable likelihoods.
While traditional statistical approaches like approximate Bayesian computation
and Bayesian synthetic likelihood have been studied under well-specified and
misspecified settings, they often suffer from inefficiencies due to wasted
model simulations. Neural approaches, such as sequential neural likelihood
(SNL) avoid this wastage by utilising all model simulations to train a neural
surrogate for the likelihood function. However, the performance of SNL under
model misspecification is unreliable and can result in overconfident posteriors
centred around an inaccurate parameter estimate. In this paper, we propose a
novel SNL method, which through the incorporation of additional adjustment
parameters, is robust to model misspecification and capable of identifying
features of the data that the model is not able to recover. We demonstrate the
efficacy of our approach through several illustrative examples, where our
method gives more accurate point estimates and uncertainty quantification than
SNL.
- Abstract(参考訳): シミュレーションに基づく推論手法は、難易度を持つ機械的およびシミュレーション可能なモデルのパラメータ推定に不可欠である。
近似ベイズ計算やベイズ合成推定法のような従来の統計学的手法は、よく特定され誤った設定の下で研究されてきたが、しばしば無駄なモデルシミュレーションによって非効率に苦しめられている。
シーケンシャル・ニューラル・サイエント(SNL)のようなニューラルアプローチは、全てのモデルシミュレーションを利用して、確率関数のためにニューラル・サロゲートを訓練することによって、この無駄を避ける。
しかし, モデル不特定条件下でのSNLの性能は信頼できないため, 不正確なパラメータ推定を中心にした過信後部が生じる可能性がある。
本稿では,追加の調整パラメータを組み込んだ新しいsnl法を提案する。この手法は,モデルの誤特定に頑健であり,モデルが復元できないデータの特徴を識別できる。
本手法は,snlよりも正確な点推定と不確かさの定量化を行うため,いくつかの例を通して,本手法の有効性を示す。
関連論文リスト
- Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
主観的逐次的ニューラルネットワーク類似度推定はシミュレーションに基づく推論の新しい手法である。
データを低次元空間に埋め込むことで、SSNLは高次元データセットに適用する際の従来の可能性ベースの手法が抱えるいくつかの問題を解く。
論文 参考訳(メタデータ) (2023-08-02T10:02:38Z) - Learning Robust Statistics for Simulation-based Inference under Model
Misspecification [23.331522354991527]
本稿では,シミュレーションに基づく推論手法の異なるクラスにまたがって機能するモデル不特定性を扱うための,最初の一般的なアプローチを提案する。
提案手法は,モデルが適切に特定された場合の精度を保ちながら,不特定シナリオにおいて頑健な推論をもたらすことを示す。
論文 参考訳(メタデータ) (2023-05-25T09:06:26Z) - Robust Neural Posterior Estimation and Statistical Model Criticism [1.5749416770494706]
モデラーはシミュレータを真のデータ生成プロセスの理想主義的な表現として扱わなければならない。
本研究では,シミュレーションモデルにおけるブラックボックスパラメータ推論を可能にするアルゴリズムのクラスであるNPEを再検討する。
一方,NPEを経時的に用いた場合,不特定性の存在は信頼できない推論につながることが判明した。
論文 参考訳(メタデータ) (2022-10-12T20:06:55Z) - Investigating the Impact of Model Misspecification in Neural
Simulation-based Inference [1.933681537640272]
本研究では,様々なモデルの誤識別が存在する場合のニューラルネットワークSBIアルゴリズムの挙動について検討する。
ミスセグメンテーションは、パフォーマンスに非常に有害な影響を及ぼす可能性があることに気付きました。
我々は、ニューラルネットワークSBIアルゴリズムが正確な結論を導出するために頼らなければならない場合、モデルの誤特定に対処するために新しいアプローチが必要であると結論付けた。
論文 参考訳(メタデータ) (2022-09-05T09:08:16Z) - A Statistical Decision-Theoretical Perspective on the Two-Stage Approach
to Parameter Estimation [7.599399338954307]
2段階(TS)アプローチは、信頼できるパラメトリック推定を得るために適用することができる。
独立したサンプルと同一のサンプルのモデルにTSアプローチを適用する方法を示す。
論文 参考訳(メタデータ) (2022-03-31T18:19:47Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
本稿では,最大安定過程からパラメータを推定する方法を示す。
モデルシミュレーションのデータを入力として使用し,統計的パラメータを学習するために深層ニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2021-07-29T21:59:48Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
本研究では,シンクホーンの発散による確率空間上の最も急降下法として機能するシンクホーン自然勾配(SiNG)アルゴリズムを提案する。
本稿では,SiNG の主要成分であるシンクホーン情報行列 (SIM) が明示的な表現を持ち,対数的スケールの複雑さを正確に評価できることを示す。
本実験では,SiNGと最先端のSGD型解法を定量的に比較し,その有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-11-09T02:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。