論文の概要: Simulation-based Inference for High-dimensional Data using Surjective Sequential Neural Likelihood Estimation
- arxiv url: http://arxiv.org/abs/2308.01054v3
- Date: Tue, 10 Jun 2025 21:13:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.308688
- Title: Simulation-based Inference for High-dimensional Data using Surjective Sequential Neural Likelihood Estimation
- Title(参考訳): サージェクティブシークエンシャルニューラルネットワークを用いた高次元データのシミュレーションに基づく推論
- Authors: Simon Dirmeier, Carlo Albert, Fernando Perez-Cruz,
- Abstract要約: 我々はSBI(Surjective Sequential Neural Likelihood Estimation)という,シミュレーションベース推論(SBI)手法のファミリーにおける新しいメンバーを提案する。
SSNL は次元共振型正規化フローモデルに適合し、マルコフ連鎖モンテカルロあるいは変分ベイズ法による計算推論を可能にする代理可能性関数として利用する。
SSNLは、天体物理学と神経科学の文献から得られた2つの挑戦的な実例を含む、多種多様な実験で評価し、その成果が、最先端の手法に匹敵するか、同等であることを示す。
- 参考スコア(独自算出の注目度): 45.9982965995401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural likelihood estimation methods for simulation-based inference can suffer from performance degradation when the modeled data is very high-dimensional or lies along a lower-dimensional manifold, which is due to the inability of the density estimator to accurately estimate a density function. We present Surjective Sequential Neural Likelihood (SSNL) estimation, a novel member in the family of methods for simulation-based inference (SBI). SSNL fits a dimensionality-reducing surjective normalizing flow model and uses it as a surrogate likelihood function, which allows for computational inference via Markov chain Monte Carlo or variational Bayes methods. Among other benefits, SSNL avoids the requirement to manually craft summary statistics for inference of high-dimensional data sets, since the lower-dimensional representation is computed simultaneously with learning the likelihood and without additional computational overhead. We evaluate SSNL on a wide variety of experiments, including two challenging real-world examples from the astrophysics and neuroscience literatures, and show that it either outperforms or is on par with state-of-the-art methods, making it an excellent off-the-shelf estimator for SBI for high-dimensional data sets.
- Abstract(参考訳): モデルデータが非常に高次元である場合や、密度推定器が密度関数を正確に推定できないため、低次元多様体に沿っている場合、シミュレーションベース推論の確率推定法は性能劣化に悩まされる可能性がある。
シミュレーションベース推論(SBI)手法の流派であるSSNL(Surjective Sequential Neural Likelihood)推定法を提案する。
SSNL は次元共振型正規化フローモデルに適合し、マルコフ連鎖モンテカルロあるいは変分ベイズ法による計算推論を可能にする代理可能性関数として利用する。
SSNLは、低次元の表現は、可能性の学習と同時に同時に計算され、計算オーバーヘッドの増大も伴わないため、高次元データセットの推測のための要約統計を手作業で作成する必要がない。
SSNLは、天体物理学と神経科学の文献から得られた2つの挑戦的な実例を含む多種多様な実験で評価され、最先端の手法に匹敵するか、あるいは同等であることを示すとともに、高次元データセットに対するSBIの優れたオフ・ザ・シェルフ推定器となる。
関連論文リスト
- All-in-one simulation-based inference [19.41881319338419]
我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Misspecification-robust Sequential Neural Likelihood for
Simulation-based Inference [0.20971479389679337]
本稿では,追加の調整パラメータを組み込んだSNL法を提案する。
いくつかの例を通して,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-01-31T02:28:18Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
シミュレーションベース推論のための2つの合成確率法を提案する。
本研究では,シミュレータによって生成された合成データを用いて,条件付きエネルギーベースモデル(EBM)を学習する。
本研究は, カニの神経科学ネットワークのモデルに適用し, 各種合成データセット上での両手法の特性を実証する。
論文 参考訳(メタデータ) (2022-10-26T14:38:24Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
本研究では,シンクホーンの発散による確率空間上の最も急降下法として機能するシンクホーン自然勾配(SiNG)アルゴリズムを提案する。
本稿では,SiNG の主要成分であるシンクホーン情報行列 (SIM) が明示的な表現を持ち,対数的スケールの複雑さを正確に評価できることを示す。
本実験では,SiNGと最先端のSGD型解法を定量的に比較し,その有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-11-09T02:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。