Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features
- URL: http://arxiv.org/abs/2308.01930v1
- Date: Wed, 2 Aug 2023 14:10:03 GMT
- Title: Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features
- Authors: Filipe A. C. Oliveira, Felipe M. Dias, Marcelo A. F. Toledo, Diego A.
C. Cardenas, Douglas A. Almeida, Estela Ribeiro, Jose E. Krieger, Marco A.
Gutierrez
- Abstract summary: Diabetes is a prevalent chronic condition that compromises the health of millions of people worldwide.
Here, we present an alternative method to overcome shortcomings based on non-invasive optical photoplethysmography for detecting diabetes.
We classify non-Diabetic and Diabetic patients using the PPG signal and algorithms for training Logistic Regression and eXtreme Gradient Boosting.
Our findings are within the same range reported in the literature, indicating that machine learning methods are promising for developing remote, non-invasive, and continuous measurement devices for detecting and preventing diabetes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetes is a prevalent chronic condition that compromises the health of
millions of people worldwide. Minimally invasive methods are needed to prevent
and control diabetes but most devices for measuring glucose levels are invasive
and not amenable for continuous monitoring. Here, we present an alternative
method to overcome these shortcomings based on non-invasive optical
photoplethysmography (PPG) for detecting diabetes. We classify non-Diabetic and
Diabetic patients using the PPG signal and metadata for training Logistic
Regression (LR) and eXtreme Gradient Boosting (XGBoost) algorithms. We used PPG
signals from a publicly available dataset. To prevent overfitting, we divided
the data into five folds for cross-validation. By ensuring that patients in the
training set are not in the testing set, the model's performance can be
evaluated on unseen subjects' data, providing a more accurate assessment of its
generalization. Our model achieved an F1-Score and AUC of $58.8\pm20.0\%$ and
$79.2\pm15.0\%$ for LR and $51.7\pm16.5\%$ and $73.6\pm17.0\%$ for XGBoost,
respectively. Feature analysis suggested that PPG morphological features
contains diabetes-related information alongside metadata. Our findings are
within the same range reported in the literature, indicating that machine
learning methods are promising for developing remote, non-invasive, and
continuous measurement devices for detecting and preventing diabetes.
Related papers
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning [4.07484910093752]
In the U.S., over a third of adults are pre-diabetic, with 80% unaware of their status.
Existing wearable glucose monitors are limited by the lack of models trained on small datasets.
arXiv Detail & Related papers (2024-06-12T07:05:53Z) - DiabetesNet: A Deep Learning Approach to Diabetes Diagnosis [6.095029229301643]
Experimental results on three datasets show significant improvements in overall accuracy, sensitivity, and specificity compared to traditional methods.
This underscores the potential of deep learning models for robust diabetes diagnosis.
arXiv Detail & Related papers (2024-03-12T10:18:59Z) - Diabetes detection using deep learning techniques with oversampling and
feature augmentation [0.3749861135832073]
Diabetes is a chronic pathology which is affecting more and more people over the years.
It gives rise to a large number of deaths each year.
Many people living with the disease do not realize the seriousness of their health status early enough.
arXiv Detail & Related papers (2024-02-03T15:30:20Z) - Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients [0.0]
This study aimed to develop a supervised learning model to predict the risk of developing albuminuria in T2DM patients.
It consisted of 10 attributes as features and 1 attribute as the target (albuminuria)
It achieved accuracy and f1-score values as high as 0.74 and 0.75, respectively, making it suitable for screening purposes in predicting albuminuria in T2DM.
arXiv Detail & Related papers (2023-09-28T08:41:12Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Stacked LSTM Based Deep Recurrent Neural Network with Kalman Smoothing
for Blood Glucose Prediction [4.040272012640556]
We propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model.
For the OhioT1DM dataset, containing eight weeks' data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 minutes and 60 minutes of prediction horizon (PH)
Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.
arXiv Detail & Related papers (2021-01-18T02:31:38Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.