Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients
- URL: http://arxiv.org/abs/2309.16742v4
- Date: Sat, 27 Jan 2024 13:03:27 GMT
- Title: Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients
- Authors: Arief Purnama Muharram, Dicky Levenus Tahapary, Yeni Dwi Lestari,
Randy Sarayar and Valerie Josephine Dirjayanto
- Abstract summary: This study aimed to develop a supervised learning model to predict the risk of developing albuminuria in T2DM patients.
It consisted of 10 attributes as features and 1 attribute as the target (albuminuria)
It achieved accuracy and f1-score values as high as 0.74 and 0.75, respectively, making it suitable for screening purposes in predicting albuminuria in T2DM.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Diabetes, especially T2DM, continues to be a significant health problem. One
of the major concerns associated with diabetes is the development of its
complications. Diabetic nephropathy, one of the chronic complication of
diabetes, adversely affects the kidneys, leading to kidney damage. Diagnosing
diabetic nephropathy involves considering various criteria, one of which is the
presence of a pathologically significant quantity of albumin in urine, known as
albuminuria. Thus, early prediction of albuminuria in diabetic patients holds
the potential for timely preventive measures. This study aimed to develop a
supervised learning model to predict the risk of developing albuminuria in T2DM
patients. The selected supervised learning algorithms included Na\"ive Bayes,
Support Vector Machine (SVM), decision tree, random forest, AdaBoost, XGBoost,
and Multi-Layer Perceptron (MLP). Our private dataset, comprising 184 entries
of diabetes complications risk factors, was used to train the algorithms. It
consisted of 10 attributes as features and 1 attribute as the target
(albuminuria). Upon conducting the experiments, the MLP demonstrated superior
performance compared to the other algorithms. It achieved accuracy and f1-score
values as high as 0.74 and 0.75, respectively, making it suitable for screening
purposes in predicting albuminuria in T2DM. Nonetheless, further studies are
warranted to enhance the model's performance.
Related papers
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features [0.0]
Diabetes is a prevalent chronic condition that compromises the health of millions of people worldwide.
Here, we present an alternative method to overcome shortcomings based on non-invasive optical photoplethysmography for detecting diabetes.
We classify non-Diabetic and Diabetic patients using the PPG signal and algorithms for training Logistic Regression and eXtreme Gradient Boosting.
Our findings are within the same range reported in the literature, indicating that machine learning methods are promising for developing remote, non-invasive, and continuous measurement devices for detecting and preventing diabetes.
arXiv Detail & Related papers (2023-08-02T14:10:03Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
The alarming increase in diabetes calls for the need to take precautionary measures to avoid/predict the occurrence of diabetes.
This paper proposes HealthEdge, a machine learning-based smart healthcare framework for type 2 diabetes prediction in an integrated IoT-edge-cloud computing system.
arXiv Detail & Related papers (2023-01-25T07:57:18Z) - Prognosis and Treatment Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers [1.1470070927586016]
The motion of this research is a comparative study of seven machine learning classifiers and an artificial neural network method to prognosticate the detection and treatment of diabetes with high accuracy.
Our training and test dataset is an accumulation of 9483 diabetes patients information.
Our high-performing model can be used by hospitals to predict diabetes and drive research into more accurate prediction models.
arXiv Detail & Related papers (2023-01-08T19:10:20Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Using Machine Learning Techniques to Identify Key Risk Factors for
Diabetes and Undiagnosed Diabetes [0.0]
This paper reviews a wide selection of machine learning models built to predict the presence of diabetes and the presence of undiagnosed diabetes.
The most relevant variables of the best performing models are then compared.
Blood osmolality, family history, the prevalance of various compounds, and hypertension are key indicators for all diabetes risk.
arXiv Detail & Related papers (2021-05-19T20:02:35Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.