DiabetesNet: A Deep Learning Approach to Diabetes Diagnosis
- URL: http://arxiv.org/abs/2403.07483v2
- Date: Sat, 21 Sep 2024 06:40:49 GMT
- Title: DiabetesNet: A Deep Learning Approach to Diabetes Diagnosis
- Authors: Zeyu Zhang, Khandaker Asif Ahmed, Md Rakibul Hasan, Tom Gedeon, Md Zakir Hossain,
- Abstract summary: Experimental results on three datasets show significant improvements in overall accuracy, sensitivity, and specificity compared to traditional methods.
This underscores the potential of deep learning models for robust diabetes diagnosis.
- Score: 6.095029229301643
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diabetes, resulting from inadequate insulin production or utilization, causes extensive harm to the body. Existing diagnostic methods are often invasive and come with drawbacks, such as cost constraints. Although there are machine learning models like Classwise k Nearest Neighbor (CkNN) and General Regression Neural Network (GRNN), they struggle with imbalanced data and result in under-performance. Leveraging advancements in sensor technology and machine learning, we propose a non-invasive diabetes diagnosis using a Back Propagation Neural Network (BPNN) with batch normalization, incorporating data re-sampling and normalization for class balancing. Our method addresses existing challenges such as limited performance associated with traditional machine learning. Experimental results on three datasets show significant improvements in overall accuracy, sensitivity, and specificity compared to traditional methods. Notably, we achieve accuracies of 89.81% in Pima diabetes dataset, 75.49% in CDC BRFSS2015 dataset, and 95.28% in Mesra Diabetes dataset. This underscores the potential of deep learning models for robust diabetes diagnosis. See project website https://steve-zeyu-zhang.github.io/DiabetesDiagnosis/
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning [4.07484910093752]
In the U.S., over a third of adults are pre-diabetic, with 80% unaware of their status.
Existing wearable glucose monitors are limited by the lack of models trained on small datasets.
arXiv Detail & Related papers (2024-06-12T07:05:53Z) - Diabetes detection using deep learning techniques with oversampling and
feature augmentation [0.3749861135832073]
Diabetes is a chronic pathology which is affecting more and more people over the years.
It gives rise to a large number of deaths each year.
Many people living with the disease do not realize the seriousness of their health status early enough.
arXiv Detail & Related papers (2024-02-03T15:30:20Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features [0.0]
Diabetes is a prevalent chronic condition that compromises the health of millions of people worldwide.
Here, we present an alternative method to overcome shortcomings based on non-invasive optical photoplethysmography for detecting diabetes.
We classify non-Diabetic and Diabetic patients using the PPG signal and algorithms for training Logistic Regression and eXtreme Gradient Boosting.
Our findings are within the same range reported in the literature, indicating that machine learning methods are promising for developing remote, non-invasive, and continuous measurement devices for detecting and preventing diabetes.
arXiv Detail & Related papers (2023-08-02T14:10:03Z) - Prognosis and Treatment Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers [1.1470070927586016]
The motion of this research is a comparative study of seven machine learning classifiers and an artificial neural network method to prognosticate the detection and treatment of diabetes with high accuracy.
Our training and test dataset is an accumulation of 9483 diabetes patients information.
Our high-performing model can be used by hospitals to predict diabetes and drive research into more accurate prediction models.
arXiv Detail & Related papers (2023-01-08T19:10:20Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Task-wise Split Gradient Boosting Trees for Multi-center Diabetes
Prediction [37.846368153741395]
Task-wise Split Gradient Boosting Trees (TSGB) is proposed for the multi-center diabetes prediction task.
TSGB achieves superior performance against several state-of-the-art methods.
The proposed TSGB method has been deployed as an online diabetes risk assessment software for early diagnosis.
arXiv Detail & Related papers (2021-08-16T14:22:44Z) - GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent
Inference [41.348451615460796]
We propose a novel semi-supervised approach named GKD based on knowledge distillation.
We perform experiments on two public datasets for diagnosing Autism spectrum disorder, and Alzheimer's disease.
According to these experiments, GKD outperforms the previous graph-based deep learning methods in terms of accuracy, AUC, and Macro F1.
arXiv Detail & Related papers (2021-04-08T08:23:37Z) - Hybrid stacked ensemble combined with genetic algorithms for Prediction
of Diabetes [0.0]
Diabetes is one of the most common, dangerous, and costly diseases in the world.
In this study, we use the experimental data, real data on Indian diabetics on the University of California website.
Results show the high performance of the proposed method in diagnosing the disease, which has reached 98.8%, and 99% accuracy in this study.
arXiv Detail & Related papers (2021-03-15T07:47:23Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.