Dual Degradation-Inspired Deep Unfolding Network for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2308.02776v2
- Date: Tue, 31 Dec 2024 04:16:56 GMT
- Title: Dual Degradation-Inspired Deep Unfolding Network for Low-Light Image Enhancement
- Authors: Huake Wang, Xingsong Hou, Chengcu Liu, Kaibing Zhang, Xiangyong Cao, Xueming Qian,
- Abstract summary: We propose a Dual degrAdation-inSpired deep Unfolding network, termed DASUNet, for low-light image enhancement.
It learns two distinct image priors via considering degradation specificity between luminance and chrominance spaces.
Based on different specificity in two spaces, we design two customized Transformer block to model different priors.
- Score: 22.959000860546578
- License:
- Abstract: Although low-light image enhancement has achieved great stride based on deep enhancement models, most of them mainly stress on enhancement performance via an elaborated black-box network and rarely explore the physical significance of enhancement models. Towards this issue, we propose a Dual degrAdation-inSpired deep Unfolding network, termed DASUNet, for low-light image enhancement. Specifically, we construct a dual degradation model (DDM) to explicitly simulate the deterioration mechanism of low-light images. It learns two distinct image priors via considering degradation specificity between luminance and chrominance spaces. To make the proposed scheme tractable, we design an alternating optimization solution to solve the proposed DDM. Further, the designed solution is unfolded into a specified deep network, imitating the iteration updating rules, to form DASUNet. Based on different specificity in two spaces, we design two customized Transformer block to model different priors. Additionally, a space aggregation module (SAM) is presented to boost the interaction of two degradation models. Extensive experiments on multiple popular low-light image datasets validate the effectiveness of DASUNet compared to canonical state-of-the-art low-light image enhancement methods. Our source code and pretrained model will be publicly available.
Related papers
- DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains [0.0]
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions.
These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.
We propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms.
arXiv Detail & Related papers (2025-01-21T15:58:16Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement [2.9873893715462185]
We propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED.
It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains.
It successfully alleviates the dependence on pairwise training data via zero-reference learning.
arXiv Detail & Related papers (2024-03-05T11:39:17Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data.
We propose a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process.
arXiv Detail & Related papers (2023-07-27T07:22:51Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Invertible Network for Unpaired Low-light Image Enhancement [78.33382003460903]
We propose to leverage the invertible network to enhance low-light image in forward process and degrade the normal-light one inversely with unpaired learning.
In addition to the adversarial loss, we design various loss functions to ensure the stability of training and preserve more image details.
We present a progressive self-guided enhancement process for low-light images and achieve favorable performance against the SOTAs.
arXiv Detail & Related papers (2021-12-24T17:00:54Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.