Goodness-of-Fit of Attributed Probabilistic Graph Generative Models
- URL: http://arxiv.org/abs/2308.03773v1
- Date: Fri, 28 Jul 2023 18:48:09 GMT
- Title: Goodness-of-Fit of Attributed Probabilistic Graph Generative Models
- Authors: Pablo Robles-Granda, Katherine Tsai, Oluwasanmi Koyejo
- Abstract summary: We define goodness of fit in terms of the mean square contingency coefficient for random binary networks.
We apply these criteria to verify the representation capability of a probabilistic generative model for various popular types of graph models.
- Score: 11.58149447373971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic generative models of graphs are important tools that enable
representation and sampling. Many recent works have created probabilistic
models of graphs that are capable of representing not only entity interactions
but also their attributes. However, given a generative model of random
attributed graph(s), the general conditions that establish goodness of fit are
not clear a-priori. In this paper, we define goodness of fit in terms of the
mean square contingency coefficient for random binary networks. For this
statistic, we outline a procedure for assessing the quality of the structure of
a learned attributed graph by ensuring that the discrepancy of the mean square
contingency coefficient (constant, or random) is minimal with high probability.
We apply these criteria to verify the representation capability of a
probabilistic generative model for various popular types of graph models.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants [4.532043501030714]
Probabilistic graphical models that encode an underlying Markov random field are fundamental building blocks of generative modeling.
This paper is to demonstrate that full likelihood based analysis of these models is feasible in a computationally efficient manner.
arXiv Detail & Related papers (2024-04-27T02:58:22Z) - Cyclic Directed Probabilistic Graphical Model: A Proposal Based on
Structured Outcomes [0.0]
We describe a probabilistic graphical model - probabilistic relation network - that allows the direct capture of directional cyclic dependencies.
This model does not violate the probability axioms, and it supports learning from observed data.
Notably, it supports probabilistic inference, making it a prospective tool in data analysis and in expert and design-making applications.
arXiv Detail & Related papers (2023-10-25T10:19:03Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - PSD Representations for Effective Probability Models [117.35298398434628]
We show that a recently proposed class of positive semi-definite (PSD) models for non-negative functions is particularly suited to this end.
We characterize both approximation and generalization capabilities of PSD models, showing that they enjoy strong theoretical guarantees.
Our results open the way to applications of PSD models to density estimation, decision theory and inference.
arXiv Detail & Related papers (2021-06-30T15:13:39Z) - Tractably Modelling Dependence in Networks Beyond Exchangeability [0.0]
We study the estimation, clustering and degree behavior of the network in our setting.
This explores why and under which general conditions non-exchangeable network data can be described by a block model.
arXiv Detail & Related papers (2020-07-28T17:13:59Z) - Sum-product networks: A survey [0.0]
A sum-product network (SPN) is a probabilistic model, based on a rooted acyclic directed graph.
This paper offers a survey of SPNs, including their definition, the main algorithms for inference and learning from data, the main applications, a brief review of software libraries, and a comparison with related models.
arXiv Detail & Related papers (2020-04-02T17:46:29Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.