Molecular docking via quantum approximate optimization algorithm
- URL: http://arxiv.org/abs/2308.04098v2
- Date: Thu, 16 May 2024 02:58:13 GMT
- Title: Molecular docking via quantum approximate optimization algorithm
- Authors: Qi-Ming Ding, Yi-Ming Huang, Xiao Yuan,
- Abstract summary: Molecular docking plays a pivotal role in drug discovery and precision medicine, enabling us to understand protein functions and advance novel therapeutics.
Here, we introduce a potential alternative solution to this problem, the digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA), which utilizes counterdiabatic driving and QAOA on a quantum computer.
Our findings underscore quantum computing's potential in drug discovery and offer valuable insights for optimizing protein-ligand docking processes.
- Score: 1.2406403248205282
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Molecular docking plays a pivotal role in drug discovery and precision medicine, enabling us to understand protein functions and advance novel therapeutics. Here, we introduce a potential alternative solution to this problem, the digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA), which utilizes counterdiabatic driving and QAOA on a quantum computer. Our method was applied to analyze diverse biological systems, including the SARS-CoV-2 Mpro complex with PM-2-020B, the DPP-4 complex with piperidine fused imidazopyridine 34, and the HIV-1 gp120 complex with JP-III-048. The DC-QAOA exhibits superior performance, providing more accurate and biologically relevant docking results, especially for larger molecular docking problems. Moreover, QAOA-based algorithms demonstrate enhanced hardware compatibility in the noisy intermediate-scale quantum era, indicating their potential for efficient implementation under practical docking scenarios. Our findings underscore quantum computing's potential in drug discovery and offer valuable insights for optimizing protein-ligand docking processes.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum molecular docking with quantum-inspired algorithm [4.959284967789063]
We propose a novel quantum molecular docking (QMD) approach based on QA-inspired algorithm.
We construct two binary encoding methods to efficiently discretize the degrees of freedom with exponentially reduced number of bits.
We show that QMD has shown advantages over the search-based Auto Vina and the deep-learning DIFFDOCK in both re-docking and self-docking scenarios.
arXiv Detail & Related papers (2024-04-12T06:24:45Z) - Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers [0.0]
We develop a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware.
We demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems.
arXiv Detail & Related papers (2024-03-13T13:27:40Z) - Quantum Computing-Enhanced Algorithm Unveils Novel Inhibitors for KRAS [10.732020360180773]
We introduce a quantum-classical generative model that seamlessly integrates the power of quantum algorithms trained on a 16-qubit IBM quantum computer.
Our work shows for the first time the use of a quantum-generative model to yield experimentally confirmed biological hits.
arXiv Detail & Related papers (2024-02-13T04:19:06Z) - Quantum-Inspired Machine Learning for Molecular Docking [9.16729372551085]
Molecular docking is an important tool for structure-based drug design, accelerating the efficiency of drug development.
Traditional docking by searching for possible binding sites and conformations is computationally complex and results poorly under blind docking.
We introduce quantum-inspired algorithms combining quantum properties and spatial optimization problems.
Our method outperforms traditional docking algorithms and deep learning-based algorithms over 10%.
arXiv Detail & Related papers (2024-01-22T09:16:41Z) - Quantum Embedding Method for the Simulation of Strongly Correlated
Systems on Quantum Computers [0.0]
We introduce the projection-based embedding method for combining the variational quantum eigensolver (VQE) algorithm with density functional theory (DFT)
The developed VQE-in-DFT method is then implemented efficiently on a real quantum device and employed for simulating the triple bond breaking process in butyronitrile.
The developments will benefit many different chemical areas including the computer aided drug design as well as the study of metalloenzymes with a strongly correlated fragment.
arXiv Detail & Related papers (2023-02-06T19:00:03Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.