Quantum molecular docking with quantum-inspired algorithm
- URL: http://arxiv.org/abs/2404.08265v1
- Date: Fri, 12 Apr 2024 06:24:45 GMT
- Title: Quantum molecular docking with quantum-inspired algorithm
- Authors: Yunting Li, Xiaopeng Cui, Zhaoping Xiong, Bowen Liu, Bi-Ying Wang, Runqiu Shu, Nan Qiao, Man-Hong Yung,
- Abstract summary: We propose a novel quantum molecular docking (QMD) approach based on QA-inspired algorithm.
We construct two binary encoding methods to efficiently discretize the degrees of freedom with exponentially reduced number of bits.
We show that QMD has shown advantages over the search-based Auto Vina and the deep-learning DIFFDOCK in both re-docking and self-docking scenarios.
- Score: 4.959284967789063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular docking (MD) is a crucial task in drug design, which predicts the position, orientation, and conformation of the ligand when bound to a target protein. It can be interpreted as a combinatorial optimization problem, where quantum annealing (QA) has shown promising advantage for solving combinatorial optimization. In this work, we propose a novel quantum molecular docking (QMD) approach based on QA-inspired algorithm. We construct two binary encoding methods to efficiently discretize the degrees of freedom with exponentially reduced number of bits and propose a smoothing filter to rescale the rugged objective function. We propose a new quantum-inspired algorithm, hopscotch simulated bifurcation (hSB), showing great advantage in optimizing over extremely rugged energy landscapes. This hSB can be applied to any formulation of objective function under binary variables. An adaptive local continuous search is also introduced for further optimization of the discretized solution from hSB. Concerning the stability of docking, we propose a perturbation detection method to help ranking the candidate poses. We demonstrate our approach on a typical dataset. QMD has shown advantages over the search-based Autodock Vina and the deep-learning DIFFDOCK in both re-docking and self-docking scenarios. These results indicate that quantum-inspired algorithms can be applied to solve practical problems in the drug discovery even before quantum hardware become mature.
Related papers
- Adaptive quantum optimization algorithms for programmable atom-cavity systems [6.508793834090864]
We show cold atoms in an optical cavity can be built as a universal quantum with programmable all-to-all interactions.
We find the success probability of the standard quantum approximate algorithm (QAOA) decays rapidly with the problem size.
Inspired by the counterdiabatic driving, we propose an adaptive ansatz of QAOA which releases the parameter freedom of the NPP Hamiltonian to match higher-order counterdiabatic terms.
arXiv Detail & Related papers (2024-06-11T08:37:31Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Trainability Analysis of Quantum Optimization Algorithms from a Bayesian
Lens [2.9356265132808024]
We show that a noiseless QAOA circuit with a depth of $tildemathtlog nright)$ can be trained efficiently.
Our results offer theoretical performance of quantum algorithms in the noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2023-10-10T02:56:28Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Continuous black-box optimization with quantum annealing and random
subspace coding [2.839269856680851]
A black-box optimization algorithm such as Bayesian optimization finds extremum of an unknown function by alternating inference of the underlying function and optimization of an acquisition function.
In a high-dimensional space, such algorithms perform poorly due to the difficulty of acquisition function optimization.
We apply quantum annealing to overcome the difficulty in the continuous black-box optimization.
arXiv Detail & Related papers (2021-04-30T06:19:07Z) - MoG-VQE: Multiobjective genetic variational quantum eigensolver [0.0]
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers.
Here, we propose the approach which can combine both low depth and improved precision.
We observe nearly ten-fold reduction in the two-qubit gate counts as compared to the standard hardware-efficient ansatz.
arXiv Detail & Related papers (2020-07-08T20:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.