論文の概要: Cumulative Reasoning with Large Language Models
- arxiv url: http://arxiv.org/abs/2308.04371v7
- Date: Wed, 12 Mar 2025 02:55:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:36:13.797771
- Title: Cumulative Reasoning with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた累積推論
- Authors: Yifan Zhang, Jingqin Yang, Yang Yuan, Andrew Chi-Chih Yao,
- Abstract要約: 累積推論(英: Cumulative Reasoning, CR)は、大規模言語モデルを累積的かつ反復的に利用する手法である。
いくつかの複雑な推論タスクを通じてCRの利点を実証する。
- 参考スコア(独自算出の注目度): 12.267474250936123
- License:
- Abstract: Recent advancements in large language models (LLMs) have shown remarkable progress, yet their ability to solve complex problems remains limited. In this work, we introduce Cumulative Reasoning (CR), an approach that utilizes LLMs cumulatively and iteratively, mirroring human thought processes for problem-solving. CR decomposes tasks into smaller, manageable components and leverages previous propositions for effective composition, significantly enhancing problem-solving capabilities. We demonstrate CR's advantage through several complex reasoning tasks: it outperforms existing methods in logical inference tasks with up to a 9.3% improvement, achieving 98.04% accuracy on the curated FOLIO wiki dataset. In the Game of 24, it achieves 98% accuracy, marking a 24% improvement over the prior state-of-the-art. In solving MATH problems, CR achieves a 4.2% increase from previous methods and a 43% relative improvement in the most challenging level 5 problems. When incorporating a code environment with CR, we further harness LLMs' reasoning capabilities and outperform the Program of Thought (PoT) method by 38.8%. The code is available at https://github.com/iiis-ai/cumulative-reasoning.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は目覚ましい進歩を見せているが、複雑な問題を解く能力は依然として限られている。
本研究では,LLMを累積的かつ反復的に利用し,人間の思考過程を反映した問題解決手法である積算推論(CR)を導入する。
CRはタスクをより小さく管理可能なコンポーネントに分解し、既存の提案を効果的な構成に活用し、問題解決能力を著しく向上させる。
CRは論理推論タスクにおける既存のメソッドを9.3%改善し、計算済みのFOLIO wikiデータセットで98.04%の精度を達成した。
24のゲームでは98%の精度を達成し、以前の最先端よりも24%向上した。
MATH問題の解決において、CRは従来の方法から4.2%増加し、最も困難なレベル5の問題を43%改善した。
コード環境をCRに組み込む場合、LCMの推論能力をさらに活用し、PoT(Program of Thought)法を38.8%向上させる。
コードはhttps://github.com/iiis-ai/cumulative-reasoning.comから入手できる。
関連論文リスト
- Token-by-Token Regeneration and Domain Biases: A Benchmark of LLMs on Advanced Mathematical Problem-Solving [0.0]
本研究は,MATHデータセットを用いて10大言語モデル(LLM)を70億から80億のパラメータで評価する。
焦点は、9450以上のコード実行を含む、推論プロセスのステップとして実行可能なPythonコードを生成する能力である。
論文 参考訳(メタデータ) (2025-01-28T17:11:36Z) - Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving [0.0]
大規模言語モデル(LLM)の最近の進歩は、精度と推論能力の最大化に重点を置いている。
本稿では,2つの対照的なアプローチの統合を解析することにより,推論の強化と計算効率の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-12-20T08:42:45Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - Exploring Performance Contrasts in TableQA: Step-by-Step Reasoning Boosts Bigger Language Models, Limits Smaller Language Models [6.083393426133172]
本稿では,大小言語モデル(LM)の性能コントラストを検討するために,テーブル論理(Table-Logic)と呼ばれる詳細なプロンプトフローを提案する。
本手法の展開により,Llama-3-70Bのような大型LMにおいて,HybridQA上のバニラに比べて7.8%の精度向上が見られた。
本研究は,小型モデルにおけるステップ・バイ・ステップの推論手法の限界を浮き彫りにし,改善のための潜在的洞察を提供するものである。
論文 参考訳(メタデータ) (2024-11-24T22:48:44Z) - BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search [22.672130194493793]
大規模言語モデル(LLM)は、幅広いタスクやドメインで例外的なパフォーマンスを示している。
彼らは数学の厳密で論理的な性質のため、数学の問題を解くのに依然として困難に直面している。
本稿では,数学的問題解決能力を高めるための新しい手法BEATSを提案する。
論文 参考訳(メタデータ) (2024-09-26T15:47:42Z) - Building Math Agents with Multi-Turn Iterative Preference Learning [56.71330214021884]
本稿では,モデル性能をさらに向上させるために,補完的な直接選好学習手法について検討する。
既存の直接選好学習アルゴリズムは、もともとシングルターンチャットタスク用に設計されている。
この文脈に合わせたマルチターン直接選好学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-04T02:41:04Z) - PORT: Preference Optimization on Reasoning Traces [1.7292887546437081]
本稿では,言語モデルの数学的推論性能を改善するために,Chain-of-Thoughtステップの優先最適化手法を提案する。
提案手法により,Falcon2-11B と Mistral-7B の GSM8K と AQuA-RAT の数学的推論ベンチマークの精度が向上する。
ARCベンチマークやシンボリック推論問題など、改良された能力は非数学的なタスクに移行した。
論文 参考訳(メタデータ) (2024-06-23T09:51:06Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [50.76385564061713]
CoT(Chain-of-Thought)のプロンプトにより、さまざまな推論タスクにわたるLLM(Large Language Models)のパフォーマンスが向上した。
CoTは通常、セマンティックな誤解エラー、計算エラー、ステップミスという3つの落とし穴に悩まされる。
意味的誤解の誤りに対処し,LLMの数学的問題解決能力を改善するために,DUP(Deeply Understanding the Problems)を提案する。
論文 参考訳(メタデータ) (2024-04-23T12:16:05Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
推論タスクでは、小さなエラーでも不正確な結果にカスケードすることができる。
入力の摂動に頼らず、外部リソースの導入を避ける手法を開発した。
私たちのトレーニングアプローチでは、思考の連鎖の中で特定のトークンをランダムにマスクします。
論文 参考訳(メタデータ) (2024-03-04T16:21:54Z) - Tool-Augmented Reward Modeling [58.381678612409]
本稿では,外部環境へのアクセスによるRMの強化により,制約に対処するツール拡張された嗜好モデリング手法であるThemisを提案する。
我々の研究は、外部ツールをRMに統合し、様々な外部ソースとの相互作用を可能にすることを目的としている。
人間の評価では、テミスで訓練されたRLHFはベースラインと比較して平均32%の勝利率を得る。
論文 参考訳(メタデータ) (2023-10-02T09:47:40Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。