論文の概要: Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving
- arxiv url: http://arxiv.org/abs/2412.16260v1
- Date: Fri, 20 Dec 2024 08:42:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:59.365726
- Title: Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving
- Title(参考訳): 推論スケーリングと推論:Compute-Optimal LLM Problem-Solvingの実証分析
- Authors: Marwan AbdElhameed, Pavly Halim,
- Abstract要約: 大規模言語モデル(LLM)の最近の進歩は、精度と推論能力の最大化に重点を置いている。
本稿では,2つの対照的なアプローチの統合を解析することにより,推論の強化と計算効率の相乗効果について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent advances in large language models (LLMs) have predominantly focused on maximizing accuracy and reasoning capabilities, often overlooking crucial computational efficiency considerations. While this approach has yielded impressive accuracy improvements, it has led to methods that may be impractical for real-world deployment due to computational overhead and latency constraints. This paper investigates the potential synergy between reasoning enhancement and computational efficiency by analyzing the integration of two contrasting approaches: Quiet-STaR (Self-Taught Reasoner) and REBASE (REward BAlanced SEarch). Through comprehensive empirical analysis using the Mistral-7B model on the GSM8K dataset, we demonstrate that while each method excels in its primary objective-Quiet-STaR achieving superior accuracy (32.03%) despite high computational cost (554.66s runtime, 12.73T FLOPs), and REBASE providing exceptional efficiency (8.47s runtime, 2.35T FLOPs) while maintaining baseline-comparable accuracy (10.94%)-their integration reveals fundamental challenges in reconciling reasoning depth with computational efficiency. The combined approach unexpectedly results in degraded performance (9.38% accuracy, 143.66s runtime), highlighting critical insights about the complex interplay between reasoning enhancement and efficiency optimization in LLMs. Our findings illuminate the need for novel architectures and algorithms specifically designed to bridge the gap between these competing objectives, while providing concrete directions for future research in compute-efficient reasoning methods.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、精度と推論能力の最大化に重点を置いている。
このアプローチは驚くほどの精度向上をもたらしたが、計算オーバーヘッドとレイテンシの制約のため、現実のデプロイメントでは実用的でないメソッドが導かれた。
本稿では,Quiet-STaR (Self-Taught Reasoner) とREBASE (Reward BAlanced Search) の2つのコントラストアプローチを統合することにより,推論の強化と計算効率の相乗効果について検討する。
GSM8Kデータセット上のMistral-7Bモデルを用いた総合的な実験分析により、計算コストが高い(554.66sランタイム、12.73T FLOPs)にもかかわらず、それぞれの手法が主目的であるQuiet-STaRにおいて優れた精度(32.03%)を保ちながら、例外的な効率(8.47sランタイム、2.35T FLOPs)を提供するREBASEをベースラインコンパタブルな精度(10.94%)を維持しながら、その統合が計算効率で推論の深さを再現する根本的な課題を明らかにした。
組み合わせたアプローチは予想外の性能低下(9.38%の精度、143.66sランタイム)を招き、LLMにおける推論の強化と効率の最適化の間の複雑な相互作用に関する重要な洞察を浮き彫りにした。
本研究は,これらの競合する目的のギャップを埋めるために設計された新しいアーキテクチャやアルゴリズムの必要性を浮き彫りにし,計算効率の高い推論手法の具体的な研究の方向性を示した。
関連論文リスト
- Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning [53.25336975467293]
パープレキシティや自己整合性などの手法の第一理論誤差分解解析について述べる。
パープレキシティ法は、適切な整合関数が存在しないため、かなりのモデル誤差に悩まされる。
本稿では、自己整合性とパープレキシティを統合したReasoning-Pruning Perplexity Consistency(RPC)と、低確率推論経路を排除したReasoning Pruningを提案する。
論文 参考訳(メタデータ) (2025-02-01T18:09:49Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
Reward-Guided Speculative Decoding (RSD)は,大規模言語モデル(LLM)における推論の効率向上を目的とした新しいフレームワークである。
RSDは、厳密な偏りを強制する既存の投機的復号法とは対照的に、制御されたバイアスをハイリワード出力の優先順位付けに取り入れている。
RSDは,対象モデルのみでの復号化に対して,高い効率向上を実現し,並列復号法よりも高い精度を実現している。
論文 参考訳(メタデータ) (2025-01-31T17:19:57Z) - Efficient and Scalable Deep Reinforcement Learning for Mean Field Control Games [16.62770187749295]
平均場制御ゲーム(MFCG)は、無限に多くの相互作用するエージェントのシステムを解析するための強力な理論的枠組みを提供する。
本稿では,MFCGの近似平衡解に対する拡張性のある深層強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2024-12-28T02:04:53Z) - Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs [29.735465300269993]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な能力を示してきたが、しばしば空間的推論に苦しむ。
本稿では LLM と Answer Set Programming (ASP) の反復的フィードバックにより LLM の空間推論能力を高める新しいニューラルシンボリックフレームワークを提案する。
我々は、StepGameとSparQAという2つのベンチマークデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-11-27T18:04:05Z) - Software Fault Localization Based on Multi-objective Feature Fusion and Deep Learning [1.6724380665811045]
ソフトウェアのフォールトローカライゼーションは、機能の多様性が制限され、従来の手法の精度が低いため、依然として困難である。
本稿では,多目的最適化を深層学習モデルに統合し,フォールトローカライゼーション(FL)の精度と効率を両立させる手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T04:37:32Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [37.430396755248104]
本稿では,大規模言語モデル(LLM)推論を強化するために,DID法を提案する。
DIDはリトルストーン次元と情報エントロピーを組み合わせた2次元複雑度評価システムを実装している。
その結果,推理精度と解の精度は有意に向上した。
論文 参考訳(メタデータ) (2024-10-03T18:30:47Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach [18.153641696306707]
本研究では、モデルベース強化学習(MBRL)からインスピレーションを得て、エッジとユーザ機器(UE)間の最適分割点を決定するフレームワークを提案する。
報酬代理モデルを導入することで、頻繁な性能評価の計算コストを大幅に削減できる。
論文 参考訳(メタデータ) (2024-06-03T09:41:42Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。