An Exploratory Study of V-Model in Building ML-Enabled Software: A Systems Engineering Perspective
- URL: http://arxiv.org/abs/2308.05381v4
- Date: Sun, 5 May 2024 05:56:36 GMT
- Title: An Exploratory Study of V-Model in Building ML-Enabled Software: A Systems Engineering Perspective
- Authors: Jie JW Wu,
- Abstract summary: Machine learning (ML) components are being added to more and more critical and impactful software systems.
This research investigates the use of V-Model in addressing the interdisciplinary collaboration challenges when building ML-enabled systems.
- Score: 0.7252027234425334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) components are being added to more and more critical and impactful software systems, but the software development process of real-world production systems from prototyped ML models remains challenging with additional complexity and interdisciplinary collaboration challenges. This poses difficulties in using traditional software lifecycle models such as waterfall, spiral, or agile models when building ML-enabled systems. In this research, we apply a Systems Engineering lens to investigate the use of V-Model in addressing the interdisciplinary collaboration challenges when building ML-enabled systems. By interviewing practitioners from software companies, we established a set of 8 propositions for using V-Model to manage interdisciplinary collaborations when building products with ML components. Based on the propositions, we found that despite requiring additional efforts, the characteristics of V-Model align effectively with several collaboration challenges encountered by practitioners when building ML-enabled systems. We recommend future research to investigate new process models, frameworks and tools that leverage the characteristics of V-Model such as the system decomposition, clear system boundary, and consistency of Validation & Verification (V&V) for building ML-enabled systems.
Related papers
- A Large-Scale Study of Model Integration in ML-Enabled Software Systems [4.776073133338119]
Machine learning (ML) and its embedding in systems has drastically changed the engineering of software-intensive systems.
Traditionally, software engineering focuses on manually created artifacts such as source code and the process of creating them.
We present the first large-scale study of real ML-enabled software systems, covering over 2,928 open source systems on GitHub.
arXiv Detail & Related papers (2024-08-12T15:28:40Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
We introduce Model Share AI (AIMS), an easy-to-use MLOps platform designed to streamline collaborative model development, model provenance tracking, and model deployment.
AIMS features collaborative project spaces and a standardized model evaluation process that ranks model submissions based on their performance on unseen evaluation data.
AIMS allows users to deploy ML models built in Scikit-Learn, Keras, PyTorch, and ONNX into live REST APIs and automatically generated web apps.
arXiv Detail & Related papers (2023-09-27T15:24:39Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Machine Learning-Enabled Software and System Architecture Frameworks [48.87872564630711]
The stakeholders with data science and Machine Learning related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks.
We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
arXiv Detail & Related papers (2023-08-09T21:54:34Z) - Understanding the Complexity and Its Impact on Testing in ML-Enabled
Systems [8.630445165405606]
We study Rasa 3.0, an industrial dialogue system that has been widely adopted by various companies around the world.
Our goal is to characterize the complexity of such a largescale ML-enabled system and to understand the impact of the complexity on testing.
Our study reveals practical implications for software engineering for ML-enabled systems.
arXiv Detail & Related papers (2023-01-10T08:13:24Z) - More Engineering, No Silos: Rethinking Processes and Interfaces in
Collaboration between Interdisciplinary Teams for Machine Learning Projects [4.482886054198202]
We identify key collaboration challenges that teams face when building and deploying machine learning systems into production.
We report on common collaboration points in the development of production ML systems for requirements, data, and integration, as well as corresponding team patterns and challenges.
arXiv Detail & Related papers (2021-10-19T20:03:20Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z) - Engineering AI Systems: A Research Agenda [9.84673609667263]
We provide a conceptualization of the typical evolution patterns that companies experience when employing machine learning.
The main contribution of the paper is a research agenda for AI engineering that provides an overview of the key engineering challenges surrounding ML solutions.
arXiv Detail & Related papers (2020-01-16T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.