Quantum mechanics with real numbers: entanglement, superselection rules
and gauges
- URL: http://arxiv.org/abs/2308.05473v1
- Date: Thu, 10 Aug 2023 09:58:16 GMT
- Title: Quantum mechanics with real numbers: entanglement, superselection rules
and gauges
- Authors: Vlatko Vedral
- Abstract summary: We show how imaginary numbers in quantum physics can be eliminated by enlarging the Hilbert Space followed by an imposition of a superselection rule.
We illustrate this procedure with a qubit and apply it to the Mach-Zehnder interferometer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show how imaginary numbers in quantum physics can be eliminated by
enlarging the Hilbert Space followed by an imposition of - what effectively
amounts to - a superselection rule. We illustrate this procedure with a qubit
and apply it to the Mach-Zehnder interferometer. The procedure is somewhat
reminiscent of the constrained quantization of the electromagnetic field,
where, in order to manifestly comply with relativity, one enlargers the Hilbert
Space by quantizing the longitudinal and scalar modes, only to subsequently
introduce a constraint to make sure that they are actually not directly
observable.
Related papers
- Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Constraint Inequalities from Hilbert Space Geometry & Efficient Quantum
Computation [0.0]
Useful relations describing arbitrary parameters of given quantum systems can be derived from simple physical constraints imposed on the vectors in the corresponding Hilbert space.
We describe the procedure and point out that this parallels the necessary considerations that make Quantum Simulation of quantum fields possible.
We suggest how to use these ideas to guide and improve parameterized quantum circuits.
arXiv Detail & Related papers (2022-10-13T22:13:43Z) - Scalar-Mediated Quantum Forces Between Macroscopic Bodies and
Interferometry [0.0]
We study the quantum force between classical objects mediated by massive scalar fields bilinearly coupled to matter.
We show that the quantum pressure inside a Dirichlet sphere is finite -- up to renormalizable divergences.
In plane-point geometry we show how to compute the contribution of the quantum force to the phase shift observable in atom interferometers.
arXiv Detail & Related papers (2022-03-02T19:00:04Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Interference in the Heisenberg Picture of Quantum Field Theory, Local
Elements of Reality and Fermions [0.0]
We show that the description is local just like in the case of the classical electromagnetic field.
We then consider a single-electron Mach-Zehnder interferometer and explain what the appropriate Heisenberg picture treatment is in this case.
arXiv Detail & Related papers (2020-11-27T21:50:40Z) - Quantum Space, Quantum Time, and Relativistic Quantum Mechanics [0.0]
We treat space and time as quantum degrees of freedom on an equal footing in Hilbert space.
Motivated by considerations in quantum gravity, we focus on a paradigm dealing with linear, first-order translations Hamiltonian and momentum constraints.
arXiv Detail & Related papers (2020-04-20T09:04:15Z) - Extracting atoms one by one from a small matter-wave soliton [0.0]
Excitations of small one-dimensional matter-wave solitons are considered within a framework of the attractive Bose-Hubbard model.
We show that a single atom can be extracted while the remaining atoms stay localized despite the persistent external modulation.
This scheme suggests the experimental realization of small matter-wave solitons with deterministic number of atoms.
arXiv Detail & Related papers (2020-02-05T13:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.