論文の概要: Unleashing the Power of Extra-Tree Feature Selection and Random Forest
Classifier for Improved Survival Prediction in Heart Failure Patients
- arxiv url: http://arxiv.org/abs/2308.05765v1
- Date: Wed, 9 Aug 2023 11:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 16:03:33.430254
- Title: Unleashing the Power of Extra-Tree Feature Selection and Random Forest
Classifier for Improved Survival Prediction in Heart Failure Patients
- Title(参考訳): 心不全患者における樹外特徴選択とランダム森林分類器のパワー解放による生存予測の改善
- Authors: Md. Simul Hasan Talukder, Rejwan Bin Sulaiman, Mouli Bardhan Paul
Angon
- Abstract要約: 心臓不全は、世界中の何百万人もの人に影響を及ぼす生命の危険がある状態です。
患者生存を正確に予測できる能力は、早期介入の助けとなり、患者の結果を改善することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heart failure is a life-threatening condition that affects millions of people
worldwide. The ability to accurately predict patient survival can aid in early
intervention and improve patient outcomes. In this study, we explore the
potential of utilizing data pre-processing techniques and the Extra-Tree (ET)
feature selection method in conjunction with the Random Forest (RF) classifier
to improve survival prediction in heart failure patients. By leveraging the
strengths of ET feature selection, we aim to identify the most significant
predictors associated with heart failure survival. Using the public UCL Heart
failure (HF) survival dataset, we employ the ET feature selection algorithm to
identify the most informative features. These features are then used as input
for grid search of RF. Finally, the tuned RF Model was trained and evaluated
using different matrices. The approach was achieved 98.33% accuracy that is the
highest over the exiting work.
- Abstract(参考訳): 心臓不全は、世界中の何百万人もの人に影響を及ぼす生命の危険がある状態です。
患者の生存率を正確に予測する能力は、早期の介入を助け、患者の予後を改善する。
本研究では, ランダムフォレスト (rf) 分類器を併用した心不全患者の生存予測手法として, データプリプロセッシング手法とextra-tree (et) 特徴選択手法の活用の可能性を検討する。
ETの特徴選択の強みを活用することにより,心不全の生存に伴う有意な予測因子の同定を目指す。
一般のUCL心不全(HF)生存データセットを用いて,ET特徴選択アルゴリズムを用いて最も有用な特徴を同定する。
これらの特徴はRFのグリッドサーチの入力として使用される。
最後に、異なる行列を用いて調整されたRFモデルを訓練し評価した。
このアプローチは98.33%の精度で達成された。
関連論文リスト
- A data balancing approach towards design of an expert system for Heart Disease Prediction [0.9895793818721335]
心臓病は深刻な世界的な健康問題で、毎年何百万人もの命がかかっています。
本稿では,決定木(DT),ランダムフォレスト(RF),線形判別分析,エクストラツリーブースト,アダブーストという5つの機械学習手法を用いた。
ランダムフォレストと決定木モデルの精度は99.83%だった。
論文 参考訳(メタデータ) (2024-07-26T08:56:13Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Artificial Intelligence (AI) Based Prediction of Mortality, for COVID-19 Patients [0.0]
重篤な新型コロナウイルス患者に対しては、高リスク患者を特定し、生存とICU(ICU)の必要性を予測することが重要である。
本研究では,9つの機械学習アルゴリズムと2つの広く使われている特徴選択法を組み合わせたディープラーニングアルゴリズムの性能について検討した。
LSTMは最終状態とICU要件を90%, 92%, 86%, 95%の精度, 感度, 特異度, AUCで予測した。
論文 参考訳(メタデータ) (2024-03-28T12:11:29Z) - SurvRNC: Learning Ordered Representations for Survival Prediction using Rank-N-Contrast [4.5445892770974154]
Survival Rank-N Contrast (SurvRNC) は、生存時間に基づいて順序付けられた表現を得るための正規化器としての損失関数である。
訓練にSurvRNC法を用いることで,異なる深層生存モデルにおいて高い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-03-15T18:00:11Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology [40.96261204117952]
肺腺癌と扁平上皮癌を鑑別するモデルを訓練し,高い信頼度予測がUQなしで予測を上回ることを示す。
非肺癌コホートに対する腺癌と扁平上皮癌との高信頼度予測を精度良く行うことで, 領域シフトの設定においてUQ閾値の信頼性が保たれることを示す。
論文 参考訳(メタデータ) (2022-04-09T17:35:37Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
本研究は、心不全生存予測モデルの説明可能性分析と評価について述べる。
このモデルでは、最高のアンサンブルツリーアルゴリズムを選択できるデータワークフローパイプラインと、最高の機能選択テクニックが採用されている。
本論文の主な貢献は、精度-説明可能性バランスに基づいて、HF生存率の最良の予測モデルを選択するための説明可能性駆動型アプローチである。
論文 参考訳(メタデータ) (2021-08-20T09:03:26Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - A random shuffle method to expand a narrow dataset and overcome the
associated challenges in a clinical study: a heart failure cohort example [50.591267188664666]
本研究の目的は、統計的に合法なHFデータセットのカーディナリティを高めるためにランダムシャッフル法を設計することであった。
提案されたランダムシャッフル法は、HFデータセットのカーディナリティを10回、およびランダムな繰り返し測定アプローチに続いて21回向上させることができた。
論文 参考訳(メタデータ) (2020-12-12T10:59:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。