Spin-Orbit Interaction Enabled High-Fidelity Two-Qubit Gates
- URL: http://arxiv.org/abs/2308.06986v4
- Date: Mon, 23 Oct 2023 08:10:04 GMT
- Title: Spin-Orbit Interaction Enabled High-Fidelity Two-Qubit Gates
- Authors: Jiaan Qi, Zhi-Hai Liu and H. Q. Xu
- Abstract summary: We study the implications of spin-orbit interaction (SOI) for two-qubit gates (TQGs) in semiconductor spin qubit platforms.
We develop a computational Hamiltonian that captures the essence of SOI, and use it to derive properties of the rotating-frame time evolutions.
We discover and discuss novel two-qubit dynamics that are inaccessible without SOI.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the implications of spin-orbit interaction (SOI) for two-qubit gates
(TQGs) in semiconductor spin qubit platforms. SOI renders the exchange
interaction governing qubit pairs anisotropic, posing a serious challenge for
conventional TQGs derived for the isotropic Heisenberg exchange. Starting from
microscopic level, we develop a concise computational Hamiltonian that captures
the essence of SOI, and use it to derive properties of the rotating-frame time
evolutions. Two key findings are made. First, for the
controlled-phase/controlled-Z gate, we show and analytically prove the
existence of ``SOI nodes'' where the fidelity can be optimally enhanced, with
only slight modifications in terms of gate time and local phase corrections.
Second, we discover and discuss novel two-qubit dynamics that are inaccessible
without SOI -- the reflection gate and the direct controlled-not gate. The
relevant conditions and achievable fidelities are studied for the direct
controlled-not gate.
Related papers
- A diverse set of two-qubit gates for spin qubits in semiconductor quantum dots [5.228819198411081]
We propose and verify a fast composite two-qubit gate scheme to extend the available two-qubit gate types.
Our gate scheme limits the parameter requirements of all essential two-qubit gates to a common JDeltaE_Z region.
With this versatile composite gate scheme, broad-spectrum two-qubit operations allow us to efficiently utilize the hardware and the underlying physics resources.
arXiv Detail & Related papers (2024-04-29T13:37:43Z) - Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
We consider a general form of the dynamics of open quantum systems determined by the Gorini-Kossakowsky-Sudarchhan-Lindblad type master equation.
We analyze the control problems of generating two-qubit C-NOT, SWAP, and C-Z gates using piecewise constant controls and optimization.
arXiv Detail & Related papers (2023-12-09T17:55:47Z) - A SWAP Gate for Spin Qubits in Silicon [5.6151418663848744]
We show a fast SWAP gate with a duration of 25 ns based on quantum dots in isotopically enriched silicon.
We calibrate the single-qubit local phases during the SWAP gate by incorporating single-qubit gates in our circuit.
These results pave the way for high fidelity SWAP gates, and processes based on them, such as quantum communication on chip and quantum simulation.
arXiv Detail & Related papers (2023-10-10T15:24:15Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Implementing High-fidelity Two-Qubit Gates in Superconducting Coupler
Architecture with Novel Parameter Regions [0.0]
This paper focuses on the gate error sources and the related physical mechanism of ZZ parasitic couplings.
Our study opens up new opportunities to implement high-fidelity two-qubit gates in superconducting coupler architecture.
arXiv Detail & Related papers (2021-05-27T16:59:02Z) - A universal quantum gate set for transmon qubits with strong ZZ
interactions [16.56373732567445]
High-fidelity single- and two-qubit gates are essential building blocks for a fault-tolerant quantum computer.
One limiting factor is the residual ZZ-interaction, which originates from a coupling between computational states and higher-energy states.
We experimentally demonstrate that it can be exploited to produce a universal set of fast single- and two-qubit entangling gates.
arXiv Detail & Related papers (2021-03-23T04:46:55Z) - Error analysis in suppression of unwanted qubit interactions for a
parametric gate in a tunable superconducting circuit [0.0]
We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable coupler.
We implement the twoqubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits.
arXiv Detail & Related papers (2020-03-19T02:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.