Microwave photon detection at parametric criticality
- URL: http://arxiv.org/abs/2308.07084v3
- Date: Mon, 14 Oct 2024 12:11:52 GMT
- Title: Microwave photon detection at parametric criticality
- Authors: Kirill Petrovnin, Jiaming Wang, Michael Perelshtein, Pertti Hakonen, Gheorghe Sorin Paraoanu,
- Abstract summary: We demonstrate a simple yet powerful criticality-enhanced method of microwave photon detection.
We obtain a 73% efficiency and a dark-count rate of 167 kHz, corresponding to a responsivity of $1.3 times 1017mathrmW-1$.
We verify the single-photon operation by extracting the Poissonian statistics of a coherent probe signal.
- Score: 2.2077248302953336
- License:
- Abstract: The detection of microwave fields at single-photon power levels is a much sought-after technology, with practical applications in nanoelectronics and quantum information science. Here we demonstrate a simple yet powerful criticality-enhanced method of microwave photon detection by operating a magnetic-field tunable Kerr Josephson parametric amplifier near a first-order quantum phase transition. We obtain a 73% efficiency and a dark-count rate of 167 kHz, corresponding to a responsivity of $1.3 \times 10^{17}~\mathrm{W}^{-1}$ and noise-equivalent power of 3.28 zW/$\sqrt{\rm Hz}$. We verify the single-photon operation by extracting the Poissonian statistics of a coherent probe signal.
Related papers
- Measurement of microwave photon correlations at millikelvin with a thermal detector [1.4059056945010209]
Microwave photons are important carriers of quantum information in many promising platforms for quantum computing.
We present a measurement technique with a nanobolometer that directly measures the photon statistics at millikelvin.
This technique is poised to serve in fundamental tests of quantum mechanics with microwave photons and function as a scalable readout solution for a quantum information processor.
arXiv Detail & Related papers (2024-07-06T18:15:08Z) - Efficient Microwave Photon to Electron Conversion in a High Impedance Quantum Circuit [0.0]
We demonstrate an efficient and continuous microwave photon to electron converter with large quantum efficiency ($83%$) and low dark current.
These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium.
arXiv Detail & Related papers (2023-12-21T17:44:33Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Stepping closer to pulsed single microwave photon detectors for axions
search [0.0]
Axions detection requires the ultimate sensitivity down to the single photon limit.
We follow two promising approaches that both rely on the use of superconducting devices based on the Josephson effect.
Once optimized, both the devices have the potential to reach single photon sensitivity.
arXiv Detail & Related papers (2023-02-15T09:50:34Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Optically heralded microwave photons [1.606071974243323]
A quantum network that distributes and processes entanglement would enable powerful new computers and sensors.
Superconducting qubits operate naturally on microwave photons that have roughly $40,000$ times less energy.
We implement and demonstrate a transducer device that can generate entanglement between optical and microwave photons.
arXiv Detail & Related papers (2022-10-19T17:27:25Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.