論文の概要: IQP Sampling and Verifiable Quantum Advantage: Stabilizer Scheme and
Classical Security
- arxiv url: http://arxiv.org/abs/2308.07152v1
- Date: Mon, 14 Aug 2023 14:03:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 13:07:47.360662
- Title: IQP Sampling and Verifiable Quantum Advantage: Stabilizer Scheme and
Classical Security
- Title(参考訳): iqpサンプリングと検証可能な量子アドバンテージ:安定化スキームと古典的セキュリティ
- Authors: Michael J. Bremner, Bin Cheng and Zhengfeng Ji
- Abstract要約: 本稿では, IQP回路, 安定化器形式, 符号化理論, および IQP回路相関関数の効率的な評価結果に基づいて, エフスタビライザー方式(emphstabilizer scheme)と呼ばれるIQPサンプリングプロトコルのファミリを紹介する。
古典的セキュリティを評価するため,カハナモク・メイヤーの攻撃を特別事例として,秘密抽出に基づく攻撃の類型を探究する。
- 参考スコア(独自算出の注目度): 1.7586417032126085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sampling problems demonstrating beyond classical computing power with noisy
intermediate-scale quantum (NISQ) devices have been experimentally realized. In
those realizations, however, our trust that the quantum devices faithfully
solve the claimed sampling problems is usually limited to simulations of
smaller-scale instances and is, therefore, indirect. The problem of verifiable
quantum advantage aims to resolve this critical issue and provides us with
greater confidence in a claimed advantage. Instantaneous quantum
polynomial-time (IQP) sampling has been proposed to achieve beyond classical
capabilities with a verifiable scheme based on quadratic-residue codes (QRC).
Unfortunately, this verification scheme was recently broken by an attack
proposed by Kahanamoku-Meyer. In this work, we revive IQP-based verifiable
quantum advantage by making two major contributions. Firstly, we introduce a
family of IQP sampling protocols called the \emph{stabilizer scheme}, which
builds on results linking IQP circuits, the stabilizer formalism, coding
theory, and an efficient characterization of IQP circuit correlation functions.
This construction extends the scope of existing IQP-based schemes while
maintaining their simplicity and verifiability. Secondly, we introduce the
\emph{Hidden Structured Code} (HSC) problem as a well-defined mathematical
challenge that underlies the stabilizer scheme. To assess classical security,
we explore a class of attacks based on secret extraction, including the
Kahanamoku-Meyer's attack as a special case. We provide evidence of the
security of the stabilizer scheme, assuming the hardness of the HSC problem. We
also point out that the vulnerability observed in the original QRC scheme is
primarily attributed to inappropriate parameter choices, which can be naturally
rectified with proper parameter settings.
- Abstract(参考訳): ノイズ中間スケール量子(nisq)デバイスを用いた古典計算能力を超えたサンプリング問題は実験的に実現されている。
しかし、これらの実現においては、量子デバイスが要求されるサンプリング問題を忠実に解くという信頼は通常、小規模インスタンスのシミュレーションに限られており、間接的である。
検証可能な量子アドバンテージの問題は、この問題を解決し、主張されたアドバンテージに対する信頼性を高めることを目的としています。
量子多項式時間(iqp)サンプリングは、二次符号(qrc)に基づいた検証可能なスキームを用いて古典的能力を超えて実現するために提案されている。
残念なことに、この検証計画は、最近カハナモク・マイヤーが提案した攻撃によって破られた。
本研究では,2つの主要な貢献によってIQPに基づく検証可能な量子優位性を復活させる。
まず, iqp回路をリンクする結果, 安定化器形式, 符号化理論, iqp回路相関関数の効率的なキャラクタリゼーションに基づく, \emph{stabilizer scheme} と呼ばれる一連のiqpサンプリングプロトコルを導入する。
この構成は既存のiqpベースのスキームの範囲を拡張し、単純さと検証可能性を維持している。
第二に,安定化器スキームの根底にある数学的な課題として,hsc問題(enmph{hidden structured code})を導入する。
古典的セキュリティを評価するために,カハナモクメイヤー攻撃を特殊事例として,秘密抽出に基づく攻撃の種類を考察する。
我々は,HSC問題の硬さを前提として,安定化器方式の安全性を示す。
また、元のQRC方式で観測された脆弱性は主に不適切なパラメータ選択によるもので、適切なパラメータ設定で自然に修正可能であることも指摘した。
関連論文リスト
- Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
この論文は、ノイズの多い量子ハードウェアにおける機能量子回路の同定に焦点を当てている。
本稿では, テンソルを用いた量子回路の符号化, 環境力学の制約により, 可能な回路の探索空間を効率的に探索する。
様々なVQAを扱う際、我々のRLベースのQASは既存のQASよりも優れています。
論文 参考訳(メタデータ) (2024-02-21T12:30:39Z) - Secret extraction attacks against obfuscated IQP circuits [0.92463347238923]
2008年、シェパードとブレムナーは、検証者が比較的簡単に実装できるIQP回路の族からユニタリを構成するプロトコルを提案した。
難題は難解な秘密を含むように設計されており、統計検査に変換できる。
カハナモク・マイヤーは、効率的な古典的秘密抽出攻撃を発見した。
Bremner氏、Cheng氏、Ji氏は最近、オリジナルのプロトコルを広範囲に一般化した。
論文 参考訳(メタデータ) (2023-12-15T19:08:35Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
我々はカーンズのSQオラクルとヴァリアントの弱い評価オラクルからインスピレーションを得ます。
評価クエリから学習するための非条件の下限を出力する,広範かつ直感的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-26T18:23:21Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Learning Classical Readout Quantum PUFs based on single-qubit gates [9.669942356088377]
統計的クエリ(SQ)モデルを用いて古典的読み出し量子PUF(CR-QPUF)のクラスを定式化する。
敵がCR-QPUFにSQアクセスした場合、シングルビット回転ゲートに基づくCR-QPUFのセキュリティが不十分であることを示す。
悪意ある者がCR-QPUF特性を学習し、量子デバイスのシグネチャを鍛える方法を示す。
論文 参考訳(メタデータ) (2021-12-13T13:29:22Z) - Indistinguishability Obfuscation of Null Quantum Circuits and
Applications [17.72516323214125]
我々は、ヌル量子回路(量子ヌル-iO)の不明瞭性難解化の概念を研究する。
我々は、量子null-iOが、我々の研究に先立って、仮定さえも存在しないような、新しい暗号プリミティブのシリーズを実現する方法を示す。
論文 参考訳(メタデータ) (2021-06-11T00:08:14Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
パウリの誤差は、多数の現実的な量子チャネルの中で最も低いサンプリングオーバーヘッドをもたらすことを示す。
我々はQEMと量子チャネル符号化を併用する手法を考案し、純粋なQEMと比較してサンプリングオーバーヘッドの低減を解析する。
論文 参考訳(メタデータ) (2020-12-15T15:51:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
本稿では、量子誤り訂正符号の品質と、論理ゲートの普遍的な集合を達成する能力とを結びつける、近似したイージン・クニル定理の証明を示す。
我々の導出は、一般的な量子気象プロトコルにおける量子フィッシャー情報に強力な境界を用いる。
論文 参考訳(メタデータ) (2020-04-24T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。