論文の概要: A Unifying Generator Loss Function for Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2308.07233v3
- Date: Mon, 18 Mar 2024 02:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 04:02:28.655878
- Title: A Unifying Generator Loss Function for Generative Adversarial Networks
- Title(参考訳): 生成逆数ネットワークのための統一電源損失関数
- Authors: Justin Veiner, Fady Alajaji, Bahman Gharesifard,
- Abstract要約: 二重目的生成逆数ネットワーク(GAN)に対する$alpha$-parametrized generator loss関数の導入
ジェネレータ損失関数は対称クラス確率推定型関数である$mathcalL_alpha$に基づいており、その結果のGANシステムは$mathcalL_alpha$-GANと呼ばれる。
- 参考スコア(独自算出の注目度): 5.5575224613422725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A unifying $\alpha$-parametrized generator loss function is introduced for a dual-objective generative adversarial network (GAN), which uses a canonical (or classical) discriminator loss function such as the one in the original GAN (VanillaGAN) system. The generator loss function is based on a symmetric class probability estimation type function, $\mathcal{L}_\alpha$, and the resulting GAN system is termed $\mathcal{L}_\alpha$-GAN. Under an optimal discriminator, it is shown that the generator's optimization problem consists of minimizing a Jensen-$f_\alpha$-divergence, a natural generalization of the Jensen-Shannon divergence, where $f_\alpha$ is a convex function expressed in terms of the loss function $\mathcal{L}_\alpha$. It is also demonstrated that this $\mathcal{L}_\alpha$-GAN problem recovers as special cases a number of GAN problems in the literature, including VanillaGAN, Least Squares GAN (LSGAN), Least $k$th order GAN (L$k$GAN) and the recently introduced $(\alpha_D,\alpha_G)$-GAN with $\alpha_D=1$. Finally, experimental results are conducted on three datasets, MNIST, CIFAR-10, and Stacked MNIST to illustrate the performance of various examples of the $\mathcal{L}_\alpha$-GAN system.
- Abstract(参考訳): 従来のGAN(VanillaGAN)システムのように、標準的な(または古典的な)判別器損失関数を使用する二重目的生成逆数ネットワーク(GAN)に対して、$\alpha$-parametrized generator loss関数を導入する。
ジェネレータ損失関数は対称クラス確率推定型関数である$\mathcal{L}_\alpha$に基づいており、結果として得られるGANシステムは$\mathcal{L}_\alpha$-GANと呼ばれる。
最適判別器の下では、ジェンセン・シャノン発散の自然な一般化であるJensen-$f_\alpha$-divergence を最小化することで、ジェネセンの最適化問題は、損失関数 $\mathcal{L}_\alpha$ で表される凸函数であることを示す。
また、この$\mathcal{L}_\alpha$-GAN問題は、VanillaGAN、Least Squares GAN (LSGAN)、Least $k$th order GAN (L$k$GAN)、最近導入された$(\alpha_D,\alpha_G)$-GAN with $\alpha_D=1$など、文学における多くのGAN問題として回復することを示した。
最後に、MNIST、CIFAR-10、Stacked MNISTの3つのデータセットを用いて実験を行い、$\mathcal{L}_\alpha$-GANシステムの様々な例のパフォーマンスを示す。
関連論文リスト
- Addressing GAN Training Instabilities via Tunable Classification Losses [8.151943266391493]
GAN(Generative Adversarial Network)は、形式的な保証付き合成データを生成する。
すべての対称$f$-発散は収束において同値であることを示す。
また,合成2次元ガウス混合環のトレーニング不安定性を緩和するために,$(alpha_D,alpha_G)$のチューニング値も強調する。
論文 参考訳(メタデータ) (2023-10-27T17:29:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - $(\alpha_D,\alpha_G)$-GANs: Addressing GAN Training Instabilities via
Dual Objectives [7.493779672689531]
生成器(G)と識別器(D)に異なる値関数(対象物)を持つ2目的GANのクラスを導入する。
結果のゼロでない和ゲームは、$(alpha_D,alpha_G)$の適切な条件下での$f$-divergenceを最小化する。
合成2次元ガウス混合環とスタックドMNISTデータセットのトレーニング不安定性を緩和するために, チューニング $(alpha_D,alpha_G)$ の値を強調した。
論文 参考訳(メタデータ) (2023-02-28T05:22:54Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
位置スケール・異方性雑音モデル(LSNM)のクラスについて検討する。
症例によっては, 因果方向が同定可能であることが示唆された。
我々は,LSNMの2つの推定器を提案し,その1つは(非線形)特徴写像に基づく推定器と,1つはニューラルネットワークに基づく推定器を提案する。
論文 参考訳(メタデータ) (2022-10-13T17:18:59Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Generative Adversarial Neural Operators [59.21759531471597]
本稿では,無限次元関数空間上の確率学習のための生成モデルであるGANOを提案する。
GANOは、ジェネレータニューラル演算子と識別器ニューラル関数の2つの主要成分から構成される。
入力関数と出力関数が共に GRF からのサンプルである場合のGANO を実験的に検討し、その性能を有限次元の GAN と比較する。
論文 参考訳(メタデータ) (2022-05-06T05:12:22Z) - Realizing GANs via a Tunable Loss Function [7.455546102930911]
我々は$alpha$-GAN と呼ばれる調整可能な GAN を導入し、$alpha in (0,infty]$ でパラメータ化する。
その結果,$alpha$-GANは有本発散と密接に関連していることがわかった。
論文 参考訳(メタデータ) (2021-06-09T17:18:21Z) - Convergence and Sample Complexity of SGD in GANs [15.25030172685628]
SGDによるGAN(Generative Adversarial Networks)のトレーニングにおける収束保証を提供する。
我々は,非線形アクティベーション機能を持つ1層ジェネレータネットワークによってモデル化されたターゲット分布の学習を検討する。
この結果は、ReLUを含む幅広い非線形アクティベーション関数 $phi$ に適用され、切り離された統計との接続によって実現される。
論文 参考訳(メタデータ) (2020-12-01T18:50:38Z) - Least $k$th-Order and R\'{e}nyi Generative Adversarial Networks [12.13405065406781]
実験結果から,MNISTデータセットとCelebAデータセットに適用した損失関数は,それぞれ$k$と$alpha$のパラメータによって提供される余分な自由度により,性能上のメリットが期待できることがわかった。
本研究は GAN に適用されているが,提案手法は汎用的であり,情報理論の他の応用例,例えば人工知能における公正性やプライバシの問題などに応用することができる。
論文 参考訳(メタデータ) (2020-06-03T18:44:05Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z) - Gaussian Error Linear Units (GELUs) [58.195342948092964]
本稿では,入力の重み付けを行うニューラルネットワークアクティベーション関数を提案する。
コンピュータビジョン、自然言語処理、音声タスクのすべてにおいて、パフォーマンスが改善されている。
論文 参考訳(メタデータ) (2016-06-27T19:20:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。