論文の概要: Statistical Error Bounds for GANs with Nonlinear Objective Functionals
- arxiv url: http://arxiv.org/abs/2406.16834v2
- Date: Tue, 07 Jan 2025 17:05:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:48:21.121018
- Title: Statistical Error Bounds for GANs with Nonlinear Objective Functionals
- Title(参考訳): 非線形目的関数を持つGANの統計的誤差境界
- Authors: Jeremiah Birrell,
- Abstract要約: 有限サンプル濃度の不等式という形で、$f$と$Gamma$の一般クラスに対して$(f,Gamma)$-GANsの統計的誤差境界を導出する。
結果は、$(f,Gamma)$-GANsの統計的一貫性を証明し、適切な極限でIMM-GANsの既知の結果に還元する。
- 参考スコア(独自算出の注目度): 5.022028859839544
- License:
- Abstract: Generative adversarial networks (GANs) are unsupervised learning methods for training a generator distribution to produce samples that approximate those drawn from a target distribution. Many such methods can be formulated as minimization of a metric or divergence between probability distributions. Recent works have derived statistical error bounds for GANs that are based on integral probability metrics (IPMs), e.g., WGAN which is based on the 1-Wasserstein metric. In general, IPMs are defined by optimizing a linear functional (difference of expectations) over a space of discriminators. A much larger class of GANs, which we here call $(f,\Gamma)$-GANs, can be constructed using $f$-divergences (e.g., Jensen-Shannon, KL, or $\alpha$-divergences) together with a regularizing discriminator space $\Gamma$ (e.g., $1$-Lipschitz functions). These GANs have nonlinear objective functions, depending on the choice of $f$, and have been shown to exhibit improved performance in a number of applications. In this work we derive statistical error bounds for $(f,\Gamma)$-GANs for general classes of $f$ and $\Gamma$ in the form of finite-sample concentration inequalities. These results prove the statistical consistency of $(f,\Gamma)$-GANs and reduce to the known results for IPM-GANs in the appropriate limit. Finally, our results also give new insight into the performance of GANs for distributions with unbounded support.
- Abstract(参考訳): GAN(Generative Adversarial Network)は、ジェネレータ分布を訓練する教師なし学習手法である。
そのような方法の多くは、計量の最小化や確率分布のばらつきとして定式化することができる。
最近の研究は、積分確率測度(IPMs)、例えば1-ワッサーシュタイン測度に基づくWGANに基づくGANの統計的誤差境界を導出した。
一般に、IPMは、微分器の空間上の線形汎函数(期待の差)を最適化することによって定義される。
ここでは $(f,\Gamma)$-GANs と呼ぶより大きな GAN のクラスは、正則化ディスクリミネーター空間 $\Gamma$ (e g , $1$-Lipschitz 関数) とともに$f$-divergences (e g , Jensen-Shannon, KL, $\alpha$-divergences) を用いて構成することができる。
これらのGANは、$f$の選択によって非線形目的関数を持ち、多くのアプリケーションで改善された性能を示すことが示されている。
この研究では、$(f,\Gamma)$-GANsの統計誤差境界を、有限サンプル濃度の不等式という形で、$f$および$\Gamma$の一般クラスに対して導出する。
これらの結果は、$(f,\Gamma)$-GANsの統計的一貫性を証明し、適切な極限でIMM-GANsの既知の結果に還元する。
最後に,本研究の結果から,非有界なディストリビューションにおけるGANの性能に関する新たな知見が得られた。
関連論文リスト
- Idempotent Generative Network [61.78905138698094]
本稿では,ニューラルネットワークを等質にトレーニングした生成モデリングのための新しい手法を提案する。
一等演算子は、初期アプリケーションを超えて結果を変更せずに順次適用できる演算子である。
ターゲット分布とソース分布の両方からの入力を処理することにより、モデルがターゲット多様体に完全に破損または修正されたデータを投影することがわかった。
論文 参考訳(メタデータ) (2023-11-02T17:59:55Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Statistical Learning under Heterogeneous Distribution Shift [71.8393170225794]
ground-truth predictor is additive $mathbbE[mathbfz mid mathbfx,mathbfy] = f_star(mathbfx) +g_star(mathbfy)$.
論文 参考訳(メタデータ) (2023-02-27T16:34:21Z) - On counterfactual inference with unobserved confounding [36.18241676876348]
独立だが不均一な単位を持つ観測的研究を前提として、各単位の反実分布を学習することが目的である。
我々は、すべての$n$サンプルをプールして、すべての$n$パラメータベクトルを共同で学習する凸目的を導入する。
対数的ソボレフ不等式を満たすためにコンパクトに支持された分布に対して十分な条件を導出する。
論文 参考訳(メタデータ) (2022-11-14T04:14:37Z) - Asymptotic Statistical Analysis of $f$-divergence GAN [13.587087960403199]
GAN(Generative Adversarial Networks)は、データ生成において大きな成功を収めている。
GANの一般$f$-divergence定式化の統計的挙動を考察する。
得られた推定方法は、Adversarial Gradient Estimation (AGE)と呼ばれる。
論文 参考訳(メタデータ) (2022-09-14T18:08:37Z) - $\alpha$-GAN: Convergence and Estimation Guarantees [7.493779672689531]
一般CPE損失関数 GAN の min-max 最適化と、関連する$f$-divergences の最小化との対応性を証明する。
次に、$alpha$-GAN を $alpha$-loss で定義し、いくつかの GAN を補間し、有元発散の最小化に対応する。
論文 参考訳(メタデータ) (2022-05-12T23:26:51Z) - KL Guided Domain Adaptation [88.19298405363452]
ドメイン適応は重要な問題であり、現実世界のアプリケーションにしばしば必要である。
ドメイン適応文学における一般的なアプローチは、ソースとターゲットドメインに同じ分布を持つ入力の表現を学ぶことである。
確率的表現ネットワークにより、KL項はミニバッチサンプルにより効率的に推定できることを示す。
論文 参考訳(メタデータ) (2021-06-14T22:24:23Z) - Convergence and Sample Complexity of SGD in GANs [15.25030172685628]
SGDによるGAN(Generative Adversarial Networks)のトレーニングにおける収束保証を提供する。
我々は,非線形アクティベーション機能を持つ1層ジェネレータネットワークによってモデル化されたターゲット分布の学習を検討する。
この結果は、ReLUを含む幅広い非線形アクティベーション関数 $phi$ に適用され、切り離された統計との接続によって実現される。
論文 参考訳(メタデータ) (2020-12-01T18:50:38Z) - Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials [5.905364646955811]
人工知能(AI)と機械学習(ML)の分野では、未知のターゲット関数 $y=f(mathbfx)$ の近似が共通の目的である。
トレーニングセットとして$S$を参照し、新しいインスタンス$mathbfx$に対して、このターゲット関数を効果的に近似できる低複雑さの数学的モデルを特定することを目的としている。
論文 参考訳(メタデータ) (2020-11-27T04:57:40Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
GAN(Generative Adversarial Networks)は、高次元データのモデリングにおいて大きな可能性を秘めている。
本稿では,WGANの識別器の特性を活かした識別器コントラストの多様性について紹介する。
我々は、合成データと実世界の画像生成ベンチマークの両方において、大幅に改善された生成の利点を実証する。
論文 参考訳(メタデータ) (2020-04-05T01:50:16Z) - Your GAN is Secretly an Energy-based Model and You Should use
Discriminator Driven Latent Sampling [106.68533003806276]
本研究では,潜時空間におけるサンプリングは,潜時空間の前対数密度と判別器出力スコアの和によって誘導されるエネルギーベースモデルに従って,潜時空間におけるサンプリングを行うことによって達成できることを示す。
判別器駆動潜時サンプリング(DDLS)は,高次元画素空間で動作する従来の手法と比較して,高効率であることを示す。
論文 参考訳(メタデータ) (2020-03-12T23:33:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。