Cross-Attribute Matrix Factorization Model with Shared User Embedding
- URL: http://arxiv.org/abs/2308.07284v1
- Date: Mon, 14 Aug 2023 17:15:37 GMT
- Title: Cross-Attribute Matrix Factorization Model with Shared User Embedding
- Authors: Wen Liang, Zeng Fan, Youzhi Liang, Jianguo Jia
- Abstract summary: We introduce a refined NeuMF model that considers not only the interaction between users and items, but also acrossing associated attributes.
Our proposed architecture features a shared user embedding, seamlessly integrating with user embeddings to imporve the robustness and effectively address the cold-start problem.
- Score: 0.5266869303483376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past few years, deep learning has firmly established its prowess
across various domains, including computer vision, speech recognition, and
natural language processing. Motivated by its outstanding success, researchers
have been directing their efforts towards applying deep learning techniques to
recommender systems. Neural collaborative filtering (NCF) and Neural Matrix
Factorization (NeuMF) refreshes the traditional inner product in matrix
factorization with a neural architecture capable of learning complex and
data-driven functions. While these models effectively capture user-item
interactions, they overlook the specific attributes of both users and items.
This can lead to robustness issues, especially for items and users that belong
to the "long tail". Such challenges are commonly recognized in recommender
systems as a part of the cold-start problem. A direct and intuitive approach to
address this issue is by leveraging the features and attributes of the items
and users themselves. In this paper, we introduce a refined NeuMF model that
considers not only the interaction between users and items, but also acrossing
associated attributes. Moreover, our proposed architecture features a shared
user embedding, seamlessly integrating with user embeddings to imporve the
robustness and effectively address the cold-start problem. Rigorous experiments
on both the Movielens and Pinterest datasets demonstrate the superiority of our
Cross-Attribute Matrix Factorization model, particularly in scenarios
characterized by higher dataset sparsity.
Related papers
- Multifaceted User Modeling in Recommendation: A Federated Foundation Models Approach [28.721903315405353]
Multifaceted user modeling aims to uncover fine-grained patterns and learn representations from user data.
Recent studies on foundation model-based recommendation have emphasized the Transformer architecture's remarkable ability to capture complex, non-linear user-item interaction relationships.
We propose a novel Transformer layer designed specifically for recommendation, using the self-attention mechanism to capture sequential user-item interaction patterns.
arXiv Detail & Related papers (2024-12-22T11:00:00Z) - LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy.
Existing FedCF methods typically combine distributed Collaborative Filtering (CF) algorithms with privacy-preserving mechanisms, and then preserve personalized information into a user embedding vector.
This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously.
arXiv Detail & Related papers (2024-08-16T05:49:14Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
In real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed.
These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing Sequential Recommendation systems.
We propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR) to address these challenges.
arXiv Detail & Related papers (2024-05-31T07:24:42Z) - Pre-trained Neural Recommenders: A Transferable Zero-Shot Framework for
Recommendation Systems [5.597511654202054]
We show how to learn universal (i.e., supporting zero-shot adaptation without user or item auxiliary information) representations for nodes and edges from the bipartite user-item interaction graph.
arXiv Detail & Related papers (2023-09-03T14:18:31Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Dual-embedding based Neural Collaborative Filtering for Recommender
Systems [0.7949579654743338]
We propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering.
In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation.
arXiv Detail & Related papers (2021-02-04T11:32:11Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z) - Solving Cold Start Problem in Recommendation with Attribute Graph Neural
Networks [18.81183804581575]
We develop a novel framework Attribute Graph Neural Networks (AGNN) by exploiting the attribute graph rather than the commonly used interaction graph.
AGNN can produce the preference embedding for a cold user/item by learning on the distribution of attributes with an extended variational auto-encoder structure.
We propose a new graph neural network variant, i.e., gated-GNN, to effectively aggregate various attributes of different modalities in a neighborhood.
arXiv Detail & Related papers (2019-12-28T04:07:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.