論文の概要: PARIS: Part-level Reconstruction and Motion Analysis for Articulated
Objects
- arxiv url: http://arxiv.org/abs/2308.07391v1
- Date: Mon, 14 Aug 2023 18:18:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 15:09:17.375078
- Title: PARIS: Part-level Reconstruction and Motion Analysis for Articulated
Objects
- Title(参考訳): PARIS:人工物体の部分的再構成と運動解析
- Authors: Jiayi Liu, Ali Mahdavi-Amiri, Manolis Savva
- Abstract要約: 本研究は,調音対象に対する同時部分レベル再構成と動きパラメータ推定の課題に対処する。
パートレベルの暗黙的形状と外観モデルを学ぶ自己教師型エンドツーエンドアーキテクチャPARISを提案する。
提案手法は,オブジェクトカテゴリ全体にわたって最適化され,入力として3次元点雲が与えられるベースラインや先行作業よりも優れる。
- 参考スコア(独自算出の注目度): 17.191728053966873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the task of simultaneous part-level reconstruction and motion
parameter estimation for articulated objects. Given two sets of multi-view
images of an object in two static articulation states, we decouple the movable
part from the static part and reconstruct shape and appearance while predicting
the motion parameters. To tackle this problem, we present PARIS: a
self-supervised, end-to-end architecture that learns part-level implicit shape
and appearance models and optimizes motion parameters jointly without any 3D
supervision, motion, or semantic annotation. Our experiments show that our
method generalizes better across object categories, and outperforms baselines
and prior work that are given 3D point clouds as input. Our approach improves
reconstruction relative to state-of-the-art baselines with a Chamfer-L1
distance reduction of 3.94 (45.2%) for objects and 26.79 (84.5%) for parts, and
achieves 5% error rate for motion estimation across 10 object categories.
Video summary at: https://youtu.be/tDSrROPCgUc
- Abstract(参考訳): 本研究は,調音対象に対する同時部分レベル再構成と動きパラメータ推定の課題に対処する。
2つの静的調音状態の物体の2組の多視点画像が与えられると、可動部を静的部分から切り離し、動きパラメータを予測しながら形状と外観を再構築する。
この問題を解決するために,パートレベルの暗黙的形状と外観モデルを学習し,3次元の監督や動作,意味的アノテーションを使わずに動作パラメータを協調的に最適化する,自己監督型エンドツーエンドアーキテクチャPARISを提案する。
実験の結果,本手法はオブジェクトカテゴリ全体にわたって一般化され,入力として3次元点雲を与えるベースラインや先行作業よりも優れていた。
本手法は,オブジェクトのシャムファーl1距離を3.94 (45.2%) ,部品の26.79 (84.5%) に削減し,動作推定のための5%の誤差率を10のカテゴリで達成した。
ビデオ概要: https://youtu.be/tdsrropcguc
関連論文リスト
- LEIA: Latent View-invariant Embeddings for Implicit 3D Articulation [32.27869897947267]
動的3Dオブジェクトを表現するための新しいアプローチであるLEIAを紹介する。
我々の手法は、オブジェクトを異なる時間ステップまたは「状態」で観察し、現在の状態にハイパーネットワークを条件付けることである。
これらの状態の補間により、以前は見えなかった3次元空間に新しい調音構成を生成することができる。
論文 参考訳(メタデータ) (2024-09-10T17:59:53Z) - Uncertainty-aware Active Learning of NeRF-based Object Models for Robot Manipulators using Visual and Re-orientation Actions [8.059133373836913]
本稿では,ロボットが対象物の完全な3次元モデルを高速に学習し,不慣れな方向で操作できるアプローチを提案する。
我々は、部分的に構築されたNeRFモデルのアンサンブルを用いて、モデルの不確実性を定量化し、次の動作を決定する。
提案手法は, 部分的NeRFモデルにより対象物をいつ, どのように把握し, 再指向するかを判断し, 相互作用中に導入された不整合を補正するために, 対象のポーズを再推定する。
論文 参考訳(メタデータ) (2024-04-02T10:15:06Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
本稿では,3次元オブジェクト認識キャラクタ合成における新しいシーンオブジェクトへのロバストさと一般化が,参照オブジェクトを1つも持たないモーションモデルをトレーニングすることで実現可能であることを示す。
我々は、オブジェクト専用のデータセットに基づいて訓練された暗黙的な特徴表現を活用し、オブジェクトの周りのSE(3)-同変記述体フィールドをエンコードする。
本研究では,3次元仮想キャラクタの動作と相互作用の質,および未知のオブジェクトを持つシナリオに対するロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-24T17:59:51Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
深層表現を用いたオブジェクト中心セグメンテーションモデルを提案する。
複数のオブジェクトで合成トレーニングデータを生成するスケーラブルなパイプラインを導入する。
標準的なビデオセグメンテーションベンチマークでモデルを評価する。
論文 参考訳(メタデータ) (2022-07-05T17:59:43Z) - Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape
Collections [14.899075941080541]
本研究では,部分分割型3次元形状収集における調音運動の発見のための教師なしアプローチを提案する。
私たちのアプローチは、カテゴリクロージャと呼ばれる概念に基づいています。オブジェクトの部分の有効な記述は、オブジェクトを同じ意味圏に保つべきです。
我々は、PartNet-Mobilityデータセットから部品の動きを再発見するためにこれを用いてアプローチを評価した。
論文 参考訳(メタデータ) (2022-06-17T00:50:36Z) - Class-agnostic Reconstruction of Dynamic Objects from Videos [127.41336060616214]
動的オブジェクトをRGBDや校正ビデオから再構成するためのクラスに依存しないフレームワークであるREDOを紹介する。
我々は2つの新しいモジュールを開発し、まず、時間的視覚的手がかりを集約したピクセル整合性を持つ正準4次元暗黙関数を導入する。
第2に、時間的伝播と集約をサポートするためにオブジェクトのダイナミクスをキャプチャする4D変換モジュールを開発する。
論文 参考訳(メタデータ) (2021-12-03T18:57:47Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
本研究では, 運動場から独立物体の動きを復元する幾何学的解析により, モジュラーネットワークを提案する。
2つの連続フレームを入力とし、背景のセグメンテーションマスクと複数の剛体移動オブジェクトを予測し、3次元の剛体変換によってパラメータ化する。
本手法はkittiおよびsintelにおける剛体運動セグメンテーションの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-11T04:20:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。