論文の概要: ObjectSDF++: Improved Object-Compositional Neural Implicit Surfaces
- arxiv url: http://arxiv.org/abs/2308.07868v1
- Date: Tue, 15 Aug 2023 16:35:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 12:00:21.190409
- Title: ObjectSDF++: Improved Object-Compositional Neural Implicit Surfaces
- Title(参考訳): ObjectSDF++: オブジェクト合成ニューラルインシシトサーフェスの改善
- Authors: Qianyi Wu, Kaisiyuan Wang, Kejie Li, Jianmin Zheng, Jianfei Cai
- Abstract要約: 近年,多視点3次元再構成のパラダイムとして神経暗黙的表面再構成が注目されている。
以前の作業では、ObjectSDFは、オブジェクト合成ニューラルな暗黙の面の優れたフレームワークを導入しました。
我々はObjectSDF++と呼ばれる新しいフレームワークを提案し、ObjectSDFの限界を克服する。
- 参考スコア(独自算出の注目度): 40.489487738598825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, neural implicit surface reconstruction has emerged as a
popular paradigm for multi-view 3D reconstruction. Unlike traditional
multi-view stereo approaches, the neural implicit surface-based methods
leverage neural networks to represent 3D scenes as signed distance functions
(SDFs). However, they tend to disregard the reconstruction of individual
objects within the scene, which limits their performance and practical
applications. To address this issue, previous work ObjectSDF introduced a nice
framework of object-composition neural implicit surfaces, which utilizes 2D
instance masks to supervise individual object SDFs. In this paper, we propose a
new framework called ObjectSDF++ to overcome the limitations of ObjectSDF.
First, in contrast to ObjectSDF whose performance is primarily restricted by
its converted semantic field, the core component of our model is an
occlusion-aware object opacity rendering formulation that directly
volume-renders object opacity to be supervised with instance masks. Second, we
design a novel regularization term for object distinction, which can
effectively mitigate the issue that ObjectSDF may result in unexpected
reconstruction in invisible regions due to the lack of constraint to prevent
collisions. Our extensive experiments demonstrate that our novel framework not
only produces superior object reconstruction results but also significantly
improves the quality of scene reconstruction. Code and more resources can be
found in \url{https://qianyiwu.github.io/objectsdf++}
- Abstract(参考訳): 近年,多視点3次元再構成のパラダイムとして神経暗黙的表面再構成が注目されている。
従来の多視点ステレオアプローチとは異なり、ニューラルネットワークは3次元シーンを符号付き距離関数(SDF)として表現する。
しかし、シーン内の個々のオブジェクトの再構築を無視する傾向があるため、パフォーマンスと実用性が制限される。
この問題に対処するため、ObjectSDFは、個々のオブジェクトSDFを監督するために2Dインスタンスマスクを使用する、オブジェクト合成ニューラル暗黙表面の優れたフレームワークを導入した。
本稿ではObjectSDF++という新しいフレームワークを提案し,ObjectSDFの限界を克服する。
第一に、objectdfはセマンティクスフィールドの変換によって主に性能が制限されているのに対し、モデルの中核となるコンポーネントはオクルージョン認識オブジェクト不透明度レンダリング形式であり、オブジェクト不透明度を直接インスタンスマスクで監視する。
第2に,物体識別のための新しい正規化用語を設計し,衝突防止のための制約が欠如していることから,ObjectSDFが予期せぬ再設計をもたらすという問題を効果的に緩和する。
広範な実験により,新しい枠組みが優れたオブジェクト復元結果をもたらすだけでなく,シーン復元の質を著しく向上させることを示した。
コードとリソースは \url{https://qianyiwu.github.io/objectsdf++} にある。
関連論文リスト
- High-Fidelity Mask-free Neural Surface Reconstruction for Virtual Reality [6.987660269386849]
Hi-NeuSは、ニューラル暗黙表面再構成のための新しいレンダリングベースのフレームワークである。
提案手法はNeuSとその変種であるNeuralangeloを用いて検証されている。
論文 参考訳(メタデータ) (2024-09-20T02:07:49Z) - NeuRodin: A Two-stage Framework for High-Fidelity Neural Surface Reconstruction [63.85586195085141]
サイン付き距離関数 (SDF) を用いたボリュームレンダリングは, 表面再構成において有意な機能を示した。
ニューロディン(NeuRodin)は、新しい2段階の神経表面再構成フレームワークである。
NeuRodinは高忠実な表面再構成を実現し、密度ベース手法の柔軟な最適化特性を維持している。
論文 参考訳(メタデータ) (2024-08-19T17:36:35Z) - Iterative Superquadric Recomposition of 3D Objects from Multiple Views [77.53142165205283]
2次元ビューから直接3次元スーパークワッドリックを意味部品として用いたオブジェクトを再構成するフレームワークISCOを提案する。
我々のフレームワークは、再構成エラーが高い場合に、反復的に新しいスーパークワッドリックを追加します。
これは、野生の画像からでも、より正確な3D再構成を提供する。
論文 参考訳(メタデータ) (2023-09-05T10:21:37Z) - Looking Through the Glass: Neural Surface Reconstruction Against High
Specular Reflections [72.45512144682554]
暗黙的ニューラルレンダリングに基づく新しい表面再構成フレームワークNeuS-HSRを提案する。
NeuS-HSRでは、物体表面は暗黙の符号付き距離関数としてパラメータ化される。
我々は、NeuS-HSRが、HSRに対する高精度で堅牢なターゲット表面再構成において、最先端のアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-18T02:34:58Z) - Learning a Room with the Occ-SDF Hybrid: Signed Distance Function
Mingled with Occupancy Aids Scene Representation [46.635542063913185]
符号付き距離関数表現と幾何学的先行表現を用いた暗黙的ニューラルレンダリングは、大規模シーンの表面再構成において顕著な進歩をもたらした。
我々は,原色レンダリング損失と先行組込みSDFシーン表現の限界を識別する実験を行った。
非ゼロな特徴値を用いて最適化信号を返却する特徴ベースの色レンダリング損失を提案する。
論文 参考訳(メタデータ) (2023-03-16T08:34:02Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Object-Compositional Neural Implicit Surfaces [45.274466719163925]
ニューラル暗示表現は、新しいビュー合成と多視点画像からの高品質な3D再構成においてその効果を示した。
本稿では,3次元再構成とオブジェクト表現に高い忠実性を有するオブジェクト合成型ニューラル暗黙表現を構築するための新しいフレームワークであるObjectSDFを提案する。
論文 参考訳(メタデータ) (2022-07-20T06:38:04Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Reconstruct, Rasterize and Backprop: Dense shape and pose estimation
from a single image [14.9851111159799]
本稿では,1枚の画像から6-DoFポーズとともに高密度物体再構成を行うシステムを提案する。
我々は、カメラフレームの3D再構成でループを閉じるために、差別化可能なレンダリング(特にロボティクス)の最近の進歩を活用している。
論文 参考訳(メタデータ) (2020-04-25T20:53:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。